
 

 

 

GEE Paper 

125 

Agosto de 2019 

ARFIMA Reference Forecasts for Worldwide 

CO2 Emissions and the National Dimension of 

the Policy Efforts to Meet IPCC Targets 

 José M. Belbute | Alfredo M. Pereira 

Gabinete de Estratégia e Estudos do Ministério da Economia 
Office for Strategy and Studies of the Ministry of Economy 
Rua da Prata, n.º 8 – 1149-057 Lisboa – Portugal 
www.gee.gov.pt 
ISSN (online): 1647-6212 

 



 

  

 



 

1 
 

 
 

ARFIMA Reference Forecasts for Worldwide CO2 Emissions and the National Dimension of 

the Policy Efforts to Meet IPCC Targets1 

José M. Belbute
2
, Alfredo M. Pereira

3
 

 

 

 

Abstract 

We use an ARFIMA approach to develop reference scenario projections for CO2 emissions worldwide and 

for seven different regions. Our objective is to determine the magnitude of the policy efforts necessary to 

achieve the IPCC emissions reductions goals. For worldwide emissions, the aggregate policy effort required to 

achieve the 2050 goals is equivalent to 97.4% of 2010 emissions. This policy effort is frontloaded as about 

60% of such efforts would have to occur by 2030. In order to achieve the IPCC target the policy efforts in the 

cases of the USA, EU(28), Russia, and Japan - which account for 32% of worldwide emissions, are lower and 

less frontloaded than the IPCC goals themselves. In the case of China, India and the ROW, which account for 

68% of worldwide emissions, additional policy efforts are necessary to achieve reductions in emissions of 

105.0%, 156.0% and 111.4%, of the 2010 levels, respectively. In the case of India, policy efforts are not only 

rather severe but also rather dramatically frontloaded, as about 74% of the policy efforts would have to occur 

by 2030. Our results suggest that the policies toward decarbonization must consider the specific regional 

characteristics of emissions. Given the differences in the inertia of emissions in the different regions a one-size 

fits all approach is not the best approach. 
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1. Introduction 

The purpose of this article is to provide reference forecasts for aggregate CO2 emissions for the six largest 

regional emitters – China, the USA, the European Union, India, Russian, and Japan, as well as the Rest of the 

World (ROW, henceforward), based on an ARFIMA approach. Our ultimate objective is to compare our 

reference forecasts with the relevant policy emissions targets set up by the IPCC and thereby ascertain the 

magnitude of the policy effort necessary across different regions of the world to achieve such targets.  

There is strong scientific evidence confirming the warming the planet's climate system, with increasing 

temperature of the atmosphere and oceans, rising sea levels, melting ice, among others, whose most likely 

causes are the increased concentration of anthropogenic greenhouse gas emissions in the atmosphere [see 

IPCC (2014)].  

Recently, the IPCC (2018) report has pointed that limiting global warming to 1.5°C would require “rapid and 

far-reaching” transitions in land, energy, industry, buildings, transport, and cities. Global net anthropogenic 

emissions of CO2 would need to fall by about 45% from 2010 levels by 2030, reaching carbon neutrality by 

2050. The IPCC suggests that the natural carbon sequestration capacity by 2050 will be approximately 15% of 

the 2010 reference emissions. Accordingly, carbon neutrality requires by 2050 a reduction of 85% of 2010 

emission levels. The question remains, however, as to the magnitude and timing of the policy efforts 

necessary to achieve such goals.  

Identifying the proper reference scenario is critical first step in ascertaining the extent of the policy effort 

required to achieve any policy target for CO2 emissions. Specifying a reference scenario in the typical 

“business as usual” projections, means predicting a path to CO2 emissions that reflect existing demographic 

trends, prospective trends for energy and industrial processes, for the services, residential, transport and 

waste sectors, as well as, ongoing policy commitments. This conventional approach to establishing reference 

scenarios, however, introduces a large number of working assumptions and a great degree of arbitrariness in 

their specifications, thereby clouding the information it intends to provide. 

This paper uses an ARFIMA approach to provide reference forecasts for worldwide CO2 emissions based on a 

comprehensive univariate statistical analysis of the different time series and recognizing the possible presence 

of long-memory through fractional integration. Accordingly, our forecasts are based strictly on the most basic 

statistical fundamentals of the stochastic processes that underlie CO2 emissions. As such, they capture the 

information included in the sample, and implicitly assume that the observed trends will continue in the future. 

Thus, these forecasts provide the most fundamental reference case forecast of CO2 emissions [See Belbute 

and Pereira (2015, 2017)]. 

There is now an extensive literature on fractional integration, which goes beyond the stationary/non-stationary 

dichotomy to consider the possibility that variables may follow a long memory process [see, among others, 

Diebold and Rudebusch (1991), Lo (1991) Sowell (1992a) and Palma (2007)]. The ARFIMA methodology is 

inspired by a budding literature on the analysis of energy and carbon emissions based on a fractional 

integration approach [see, for example, Barassi et al.(2011), Apergis and Tsoumas (2011, 2012), Barros et al. 

( 2016) and Gil-Alana et al. (2015) and Belbute and Pereira (2015, and 2017)].  
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Measuring the persistence of CO2 emissions is of utmost importance for the design of energy and 

environmental policies. If emissions are stationary, then transitory public policies will tend to have only 

transitory effects. Permanent changes, therefore, require a permanent policy stance. On the other hand, if 

emissions are not stationary, then even transitory policies will have permanent effects on emissions, and a 

steady policy stance is less critical [See, for example, Zerbo and Darné (2019)]. 

The fractional integration approach goes beyond this dichotomy to consider the possibility that variables may 

follow a long-memory process. This long-range dependence is characterized by a hyperbolically-decaying 

autocovariance function, and by a spectral density that approaches infinity as the frequency tends to zero. 

Long memory, therefore, implies a significant dependence between observations widely separated in time, 

and, as such, the effects of policy shocks may be temporary but long lasting. Accordingly, this property has 

important policy implications for the specification of long-term reference case scenarios for CO2 emissions.  

Finally, our methodological framework has to be understood also in the context of  the current debate on which 

benchmark should be used to assess policy efforts and monitor the achievement of the goals associated, for 

example, with the UN Sustainable Development Goals or different decarbonisation goals. Indeed, our ARFIMA 

projections reflect the CO2 emissions that should exist at a future date in the absence of the target rather than 

the value recorded in a particular year, as was the case with the Kyoto Protocol targets and, more recently, 

with the Paris agreement [see Markandaya et all (2019)]. 

The remainder of this paper is organized as follows. Section 2 presents and describes the data set. Section 3 

provides a brief technical description of the methodology used. Section 4 discusses the empirical findings, 

considering first the fractional integration analysis and then the accuracy of in-sample forecasts. Section 5 

presents and discusses our reference forecasts vis-à-vis the IPCC new targets. Finally, section 6 provides a 

summary of the results, and discusses their policy implications. 

 

2. Data: Sources and Description  

2.1 Data Sources 

In this paper, we use annual data for global CO2 emissions for the period between 1950 and 2017. The data 

until 2014 is from the Carbon-Dioxide Information Analysis Centre [see Boden et. al. (2017)]. This data set 

contains information going back to 1870. Nevertheless, we have elected to work only with data starting in 

1950, given the profound structural changes that occurred after World War II. Data for 2015-2017 is based on 

both the national emissions inventories collected by the United Nations [see UNFCCC (2018)] and the energy 

statistics published by BP (2018) as reported in the Global Carbon Atlas (2019). 

Aggregate CO2 emissions are the sum of five components: emissions from burning fossil fuels – solid/coal, 

liquid/oil, gas and gas flaring, and emissions from cement production. It does not consider emissions from land 

use, or land-use change and forestry. In terms of its regional decomposition we consider seven blocks: China; 

the USA; the EU(28), the 28 countries currently making up the European Union; India; the Russian Federation, 

including before 1991 the part of the USSR corresponding to Russia; Japan; and ROW. All variables are 

measured in million metric tonnes of carbon per year (Mt, hereafter), and were converted into units of carbon 

dioxide by multiplying the original data by 3.664, the ratio of the two atomic weights. 
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Table 1 – CO2 Emissions from Fossil Fuel Combustion and Cement Production 

Years 
 

Global 
Mt 

China USA EU(28) India Russia Japan  ROW 

 Average Shares of Total Worldwide CO2 Emissions (%) 

1950-1959 7391 3.2 36.6 30.2 1.1 8.3 2.0 18.6 

1960-1969 11292 4.6 29.8 28.3 1.4 10.0 3.5 22.4 

1970-1979 17141 6.4 27.0 25.2 1.4 10.4 5.1 24.4 

1980-1989 20003 9.4 22.9 21.9 2.1 11.5 4.7 27.6 

1990-1999 23077 13.0 23.6 18.5 3.5 8.0 5.2 28.2 

2000-2009 28613 18.6 21.1 14.9 4.3 5.6 4.4 31.0 

2010-2017 35592 26.8 15.4 10.3 5.9 4.7 3.5 33.4 

2010 33445 25.4 17.0 11.8 5.1 5.0 3.6 32.1 

2017 36767 26.8 14.3 9.6 6.7 4.6 3.3 34.7 

 

2.2 Description of the Data 

Table 1 presents summary information about our data. During the sample period, worldwide CO2 emissions 

grew incessantly, reaching its highest value of 36,767 Mt in 2017. This value is 65% above the emissions 

observed in 1990 and 10% above the 2010 levels.  

CO2 emissions in China have steadily increased from 78Mt in 1950 to 9,839Mt in 2017, making it the world 

leader in emissions. China is currently responsible for 26.8% of worldwide emissions, a share that sharply 

increased over the sample period. In turn, CO2 emissions in the USA increased from 2,536Mt in 1950 to a 

peak of 6,132 Mt in 2005 and declined thereafter. In 2017, the USA contributed 5,270Mt to global emissions. 

This figure corresponds to 14.3% of worldwide emissions, making the USA the second largest polluter. This 

share, however, has been steadily decreasing since the 1950s when it reached 36.6%. 

The EU(28) was responsible in 2017 for 9.6% of worldwide CO2 emissions making it the third largest polluting 

block. In 1950, this share was 30.1% and has consistently decreased ever since. EU(28) emissions peaked in 

1979 at 4,724Mt and have declined particularly after 2005. On the other hand, in India, CO2 emissions have 

grown steadily from 66.7Mt in 1950 to 2,467Mt in 2017. India's emissions accounted for 1.1% of worldwide 

emissions in the 1950s. This share reached 6.7% in 2017, making India the fourth largest emitter. 

Russia is the fifth largest CO2 emitter having contributed in 2017 about 4.6% of worldwide emissions. 

Emissions increased from 418Mt in 1950 to 1.693 in 2017, with a peak of 2.571Mt in 1990. Russia's sharp 

drop in emissions in the 1990s is due to the breakup of the USSR in 1991. In turn, in Japan, CO2 emissions 

reached 1,205Mt in 2017, which represents 3.3% of worldwide emissions and makes Japan the sixth largest 

regional CO2 emitter. Finally, CO2 emissions from the ROW have increased persistently over the sample 

period, from 972Mt in 1950 to 12,751Mt in 2017. The share of emissions from the ROW in worldwide 

emissions increased from 18.6% in the 1950s to 34.7% in 2017. 
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3. Fractional Integration 

3.1 Fractionally-Integrated Processes 

A fractionally-integrated process is a stochastic process with a degree of integration that is a fractional 

number, and whose autocorrelations decay slowly at a hyperbolic rate of decay. Accordingly, fractionally-

integrated processes display long-run rather than short-term dependence and for that reason are also known 

as long-memory processes  

A time series xt = yt − βzt  is said to be fractionally integrated of order d, if it can be represented by 

 (1 − L)dxt = ut ,          t = 1, 2, 3, … (1)  

where,  β is the coefficients vector, zt represents all deterministic factors of the process,  yt ,  and t = 1, 2, …n, L 

is the lag operator, d is a real number that captures the long-run effect, and ut is  I(0).   

Allowing for values of “d” in the interval between 0 and 1 gives extra flexibility when modeling long-term 

dependence. Indeed, in contrast to an I(0) time series (where d = 0) in which shocks die out at an exponential 

rate, or an I(1) process (where d = 1) in which there is no mean reversion, shocks to the conditional mean of 

an I(d) time series with 0 < d < 1 dissipate at a slow hyperbolic rate. More specifically, if −0.5 < d < 0, the 

autocorrelation function decays at a slower hyperbolic rate but the process has a rebounding behavior or a 

negative correlation. If 0 < d < 0.5, the process reverts to its mean but the auto-covariance function decreases 

slowly as a result of the strong dependence on past values. The effects will last longer than in the pure 

stationary case (d = 0). If 0.5 < d < 1, the process is non-stationary with a time-dependent variance, but the 

series retains its mean-reverting property. Finally, if  d ≥ 1 , the process is non-stationary and non-mean-

reverting, i.e. the effects of random shocks are permanent [for details see, for example, Granger and Joyeux 

(1980), Granger (1980, 1981), Sowell (1992a, 1992b), Baillie (1996), Palma (2007) and Hassler et all (2016), 

Belbute and Pereira (2015)]. 

3.2 ARFIMA Processes 

An ARFIMA model is a generalization of the ARIMA model which frees it from the I(0)/I(1) dichotomy, therefore 

allowing for the estimation of the degree of integration of the data generating process. In an ARMA process the 

AR coefficients alone are important to assess whether or not the series is stationary. In the case of the 

ARFIMA model, the AR(p) and MA(q) terms are treated as part of the model selection criteria. Accordingly, the 

ARFIMA approach provides a more comprehensive and yet more parsimonious parameterization of long-

memory processes than the ARMA models. Moreover, in the ARFIMA class of models, the short-run and the 

long-run dynamics  is disentangled  by modeling the short-run  behavior through the conventional ARMA 

polynomial, while the long run  is captures by the fractional differencing parameter, d [see, among others, 

Bollerslev and Mikkelsen (1996)]. 

If the process {ut} in (1) is an ARMA(p,q), then the process {xt} is an ARFIMA(p,d, q) process and can be 

written as  

 ϕ(L)(1 − L)dxt = θ(L)et (2)  

where  

ϕ(L) = 1 − ϕ1L− ϕ2L
2 −  …  − ϕpLp = 0 

θ(L) = 1 + θ1L+ θ2L
2 +  …  + θpLq = 0 
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are the polynomials of order p and q respectivelly, with all zeroes of lying outside the unit circle, and with  et  as 

white noise. Clearly, the process is stationary and invertible for −0.5 < d < 0.5. 

The estimation of the parameters of the ARFIMA model ϕ, θ, d, β and  σ2 is done by the method of maximum 

likelihood. The log-Gaussian likelihood of y given parameter estimates η̂ = (ϕ̂, θ̂, d̂, β̂, σ̂2) was established by 

Sowell (1992b) as 

ℓ((y|η̂)) = −
1

2
{Tlog(2π) + log|V̂| + X′V̂−1X} (3)  

where  X  represents a T- dimensional vector of the observations on the process  xt = yt − βzt  and the 

covariance matrix  V has a Toeplitz structure.  

3.3 ARFIMA Forecasting and Prediction-Accuracy Assessment 

Given the symmetry properties of the covariance matrix, Vcan be factored as V = LDL′, where D = Diag(vt) 

and  L  is lower triangular, so that;  

 

L′ =

[
 
 
 
 

1 0 0 … 0
τ1,1 1 0 … 0

τ2,2 τ2,1 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

τ(T−1),(T−1) γ(T−1),(T−2) τ(T−1),(T−3) … 1]
 
 
 
 

 (4)  

 

Moreover, let τt = Vt
−1γt, γt = (γ1 , γ2 ,… , γt)

′ and Vt is the t ×  t upper left sub-matrix of V. 

Let ft = yt − βzt.  The best linear forecast of xt+1 based on x, x2 ,… xt is  

 
f̂t+1 = ∑τt,kft−k+1

t

k=1

 (5)  

Moreover, the best linear predictor of the innovations is ε̂ = L−1f, and the one-step-ahead forecasts for ŷ, in 

matrix notation, is 

 ŷ = L̂−1(y − Zβ̂) + Zβ.̂ (6)  

Forecasting is carried out as suggested by Beran (1994) so that f̂T+k = γ̃k
′ V̂−1 f̂ , where 

γ̃k = (γ̂T+k−1,   γ̂T+k−2 ,… , γ̂k). The accuracy of predictions is based on the average squared forecast error, 

which is computed as  MSE(f̂T+k) = γ̂0 − γ′̃kV̂
−1γ̃k. 

There is a wide diversity of loss functions available and their properties vary extensively. Even so, all of these 

share a common feature, in that “lower is better.” That is, a large value indicates a poor forecasting 

performance, whereas a value close to zero implies an almost-perfect forecast. We use three average loss 

indicators: the Mean Absolute Percentage Error (MAPE), the Adjusted Mean Absolute Percentage Error 

(AMAPE), and the U-statist inequality coefficient. 

The MAPE and the AMAPE are relative measures, in that they are percentages. In particular, the MAPE is the 

percentage error, and has the advantage of having a lower bound of zero. Therefore, the lower the indicator 

the greater the model’s forecast accuracy. Nevertheless, this loss function has drawbacks in any practical 

application. First, with zero values, we have a division by zero issue. Second, the MAPE does not have an 

upper limit. The AMAPE corrects almost completely the asymmetry problem between actual forecast values, 

and has the advantage of having both a zero lower bound and an upper bound. Like the MAPE, the smaller 

the AMAPE, the greater the accuracy of predictions.  
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The U-statistic provides a measure of how well a time series of estimated values compares to a corresponding 

time series of observed values.  he Theil inequality coefficient lies between zero and one, with zero suggesting 

a perfect fit. It can be decomposed into three sources of inequality; bias, variance, and covariance proportions 

coverage. The bias component of the forecast errors measures the extent to which the mean of the forecast is 

different from the mean of the recorded values. Similarly, the variance component tells us how far the variation 

of the forecast is from the variation of the actual series. Finally, the covariance proportion measures the 

remaining unsystematic component of the forecasting errors. As expected, the three components add up to 

one.   

 

4. The Basic Empirical Results 

4.1 Fractional Integration Analysis 

In Table 2, we present the results of the estimations of the different ARFIMA(ϕ,d, θ)  model. The best 

specifications were selected using the Schwartz Bayesian Information Criterion (BIC) and include statistically 

significant autoregressive and moving-average terms.  

We perform preliminary tests for the existence of structural breaks for all variables following the procedures in 

Bai-Perron (2003). Test results suggest the absence of significant evidence for break points. Still, when by 

simple visual inspection of the data we suspected the possible presence of break points, a dummy variable 

was included in the ARFIMA models. 

The corresponding estimated coefficients, however, are never statistically significant and the best specification 

for ARFIMA models as indicated by the BIC never includes structural breaks. 

Our results provide strong empirical evidence for the non-rejection of the presence of long memory for 

worldwide CO2 emissions as well as its regional components. The estimated values of the fractional 

parameter d are all between 0 and 1, thus allowing us to reject both the case of pure stationarity model (d=0) 

and the case of a unit root model (d=1).  All series exhibit long-term memory as all estimated parameters d lie 

within the interval (0, 0.5). Total emissions have a degree of persistence of d = 0.270 and the degree of 

fractional integration ranges from a minimum of 0.193 for the ROW to a maximum of 0.444 for China. 

Furthermore, the degree of persistence we estimate for worldwide emissions corresponds to the exact convex 

combination of the seven individual regions, which attests to the accuracy of our estimates. 

All of the estimates of the fractional integration parameter are statistically significant at 1%. For China and 

Russia, however, the upper bound is greater than 0.5, leaving open the possibility that CO2 emissions from 

these countries may be non-stationary, though still mean reverting. 

 

 

 

 

 

 

 



 

8 
 

Table 2 – Fractional-Integration Results: 1950-2017 

Variable Coefficient Estimate Std. Err. p-value 
 

Significance 
interval 

Global  

1 1.640 0.188 0.000 [ 1.272 ; 2.008 ] 

2 -0.643 0.187 0.001 [ -1.010 ; -0.276 ] 

 -0.512 0.151 0.001 [ -0.808 ; -0.216 ] 

 0.262 0.126 0.038 [ 0.015 ; 0.509 ] 

d 0.270 0.144 0.060 [ -0.012 ; 0.552 ] 

China 

1 0.980 0.018 0.000 [ 0.945 ; 1.015 ] 

 0.544 0.113 0.001 [ 0.323 ; 0.765 ] 

d 0.444 0.068 0.001 [ 0.311 ; 0.577 ] 

USA 
1 0.990 0.008 0.000 [ 0.974 ; 1.006 ] 

d 0.226 0.097 0.020 [ 0.036 ; 0.416 ] 

EU(28) 
1 0.989 0.010 0.000 [ 0.969 ; 1.009 ] 

d 0.273 0.091 0.003 [ 0.095 ; 0.451 ] 

India 

1 0.992 0.009 0.000 [ 0.974 ; 1.010 ] 

3 0.558 0.125 0.000 [ 0.313 ; 0.803 ] 

d 0.322 0.078 0.000 [ 0.169 ; 0.475 ] 

Russia 

1 0.977 0.022 0.000 [ 0.934 ; 1.020 ] 

7 -0.391 0.143 0.002 [ -0.671 ; -0.111 ] 

d 0.417 0.082 0.000 [ 0.256 ; 0.578 ] 

Japan 
1 0.985 0.016 0.000 [ 0.954 ; 1.016 ] 

d 0.299 0.099 0.002 [ 0.105 ; 0.493 ] 

ROW 
1 0.997 0.004 0.000 [ 0.989 ; 1.005 ] 

3 0.415 0.112 0.000 [ 0.195 ; 0.635 ] 

  d 0.193 0.071 0.007 [ 0.054 ; 0.332 ] 

Note: 𝛼  stands for the estimated value of the parameter associated with 𝑥𝑡−𝑝 of the AR component and 𝜃 stands for the 

estimated value of the stochastic term of order q (𝑒𝑡−𝑞 ) of the MA component. 

 

4.2 In-Sample Global CO2 Emissions Forecasts 

Figure 1 plots the actual values against the in-sample forecasts for CO2 emissions between 1950 and 2017 

while Table 3 summarizes our forecasting accuracy analysis for the in-sample predictions.   

We get consistently excellent in-sample predictions with a MAPE ranging from a minimum of 3.2% for 

worldwide CO2 emissions to a maximum of 7.9% for emissions from China. The percentage of projected 

values outside the confidence interval ranges from a minimum of 3% for the USA to a maximum of 7.5% for 

Japan. 
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In turn, the U-statistic shows a very small value, varying in a band between 0.02 and 0.04. This suggests that 

the predictions compare quite well with the observed values. Furthermore, the predictions are non-skewed and 

show a low variance, which suggests that they closely track the changes in the observed values. In fact, more 

than 93% of the prediction error in the six countries is non-systematic while for the ROW this component is 

87.6%. 

Finally, the fact that the degree of persistence we estimate for worldwide CO2 emissions corresponds to the 

exact convex combination of the seven individual results guarantees the consistency of the different forecasts. 

Total projections based on the aggregate results are always very close to the sum of the projections for each 

of the seven individual components.  

The difference is, on average, 0.5% in in-sample projections discussed here and about 1.5% in out-of-sample 

projections discussed below. 

Figure 1 - In-Sample CO2 Predictions: 1950-2017 
a) Global 

 

b) China 

 
c) USA 

 

d) EU(28) 
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e) India 

 

f) Russia 

 
g) Japan 

 

h) ROW 

 
 

Table 3 - In-Sample Forecast Accuracy Analysis: 1950-2017 

  

CO2 Emissions 

Global China  USA EU(28) India Russia  Japan 
 
ROW 

Mean Absolute Percentage Error 
(MAPE) 

3.2% 7.9% 4.1% 3.7% 4.2% 4.6% 4.4% 3.4% 

Adjusted Mean Absolute Percentage 
Error (AMAPE)   

2.3% 4.8% 2.8% 2.6% 2.9% 3.0% 2.3% 1.7% 

Theil Inequality Coefficient 0.02 0.02 0.04 0.03 0.02 0.03 0.02 0.02 

Mean Squared Error Decomposition:    
     

 

       Bias proportion 2.0% 1.0% 0.1% 0.4% 0.1% 0.3% 4.0% 11.0% 

       Variance proportion 0.8% 0.0% 0.0% 0.0% 4.0% 0.0% 2.6% 1.4% 

       Covariance proportion 97.2% 99.0% 99.9% 99.5% 96.0% 99.7% 93.4% 87.6% 
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5. ARFIMA CO2 Emissions Forecasts and their Implications 

5.1 The ARFIMA Forecasts 2018 - 2050 

Having established a good forecasting performance of the ARFIMA estimates, we use these estimates to 

forecast CO2 emissions until 2050. We present the detailed results in Figure 2 and in Tables A1 to A8 in the 

Appendix while in Table 4 we present summary results relative to 2010 reference levels.  

We forecast worldwide CO2 emissions to reach 37,171 Mt by 2050 after having reached a peak of 37,623 Mt 

in 2034. The forecasted emission levels in 2030 and 2050 are 12.4% and 11.1% above the 2010 reference 

level, respectively.  

From a national perspective, we can identify two groups of countries in terms of the intertemporal pattern of 

CO2 emissions forecasts into 2050. For the first group, emissions are always increasing or reach a peak later 

in the forecast horizon. This group includes China, India and the ROW, which account for 68.2% of the total 

emissions in 2017. For the second group, projected emission decline throughout the forecast horizon. This 

group includes the USA, the EU (28), Russia, and Japan, and accounts for the remaining 31.8% of worldwide 

emissions. 

 

Figure 2 – CO2 Emissions Forecasts for 2018 - 2050 

a) Global 

 

b) China 

 
c) USA 

 

d) EU(28) 
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e) India 

 

f) Russia 

 
g) Japan

 

h) ROW

  
Table 4 – CO2 Emissions Forecasts Relative to 2010 Reference Levels (%)  

 
Global China USA EU(28) India Russia Japan ROW 

2020 11.3 16.3 -7.1 -14.2 53.7 -6.1 -3.3 17.0 

2030 12.4 20.2 -9.8 -19.5 70.7 -10.7 -8.5 21.4 

2040 12.3 20.3 -12.3 -23.8 79.1 -14.9 -13.3 23.7 

2050 11.1 18.3 -14.7 -27.5 83.4 -18.8 -18.0 24.9 

 

More specifically for the first group of countries, for China, we forecast CO2 emissions to reach a peak in 2034 

at 10,248 Mt. The forecasted levels of emissions in 2030 and 2050 are 20.2% and 18.3% above the 2010 

reference level, respectively. For the ROW the projected figures are similar although emissions show a 

permanently increasing trend. Specifically, the forecast levels of emissions in 2030 and 2050 are 21.4% and 

24.9% above the 2010 reference level, respectively. In turn, we project emissions for India to always be above 

the 2010 reference levels and increasingly so. By 2030 and 2050, the flow of emissions is respectively 53.7% 

and 83.4% above the 2010 level. Accordingly, India stands out as a country for which projected emissions 

show a sharply increasing pattern. 
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As to the second group of countries, for the USA we project CO2 emissions to be 9.8% and 14.7% below the 

2010 emissions levels by 2030 and 2050. For Russia, emissions are projected to be 10.7% and 18.8% below 

the 2010 levels by 2030 and 2050, respectively while for Japan the projected emissions will be 8.5% and 

18.0% below the 2010 level. Finally, for the EU(28) the figures are 19.5% and 27.5% below 2010 level, 

respectively. Accordingly, the EU(28) stands out as a region showing a slightly more accelerated pattern of 

decarbonization.  

5.2 The ARFIMA Forecasts and the IPCC Special Report 2018 Targets 

Under the IPCC targets, global CO2 emissions would have to decrease by 15,050 Mt or 45% of 2010 

emissions by 2030 and a further 12,476 Mt, or a further 40% of 2010 levels, between 2030 and 2050. 

Accordingly, the total target accumulated reduction by 2050 corresponds to a reduction of 85% in emissions 

relative to 2010 levels.  

Of the greatest importance is the comparison of these IPCC policy targets with our ARFIMA CO2 emissions 

projections. Table 5 shows the policy effort required to meet the new IPCC targets and achieve carbon 

neutrality by 2050.  

Table 5 - Reductions in CO2 Emissions Relative to 2010 (%) 

  2030 2050 

IPCC (2018) targets -45.0 -85.0 

Policy effort based on ARFIMA forecasts   

Global -57.4 -97.4 

China -65.2 -105.2 

USA -35.2 -75.1 
EU(28) -25.5 -65.8 
India -115.7 -156.0 
Russia -34.3 -74.3 

Japan -36.5 -76.7 

ROW -71.4 -111.4 

The first column presents the total effort  necessary to achieve the intermediate IPCC target for 2030 while the 

second column displays the total effort necessary by 2050 to achieve carbon neutrality. The difference 

between the ARFIMA forecasts and the IPCC figures in the first row, therefore, measures the 

additional/reduced effort implied by the ARFIMA forecasts to reach the IPCC targets. In Figure 3, we provided 

a panoramic view of the two relevant trajectories. 

Our results indicate that to meet the IPCC mid-term targets in 2030, it is necessary a worldwide policy effort 

that leads to a reduction of CO2 emissions of 57.4% relative to 2010 levels. Of these, 12.4% corresponds to 

the extra effort over the basic 45% IPCC reduction target due to the inertia of the emissions system. To 

achieve carbon neutrality by 2050 will require a total reduction of CO2 emissions of 97.4% of 2010 levels.  

These forecasts imply that the policy efforts required to achieve decarbonization are very large, substantially 

larger than indicated by the IPCC targets themselves. Furthermore, they are also frontloaded. In the next 

decade emissions need to decline by more than the two following decades. This frontloading clearly exceeds 

the frontloading already contemplated in the IPCC targets. 

Naturally, these aggregate results hide very different realities. For regions such as China, ROW, and India, the 

task is larger than these worldwide numbers indicate while for the remaining countries the opposite is true.  
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Figure 3 – CO2 Emissions: ARFIMA Projections versus IPCC Goals 
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For China, a policy effort that cuts CO2 emissions by 65.2% of 2010 levels by 2030 is necessary to meet IPCC 

targets. By 2050, a reduction of emissions equivalent to 105.2% of the 2010 emissions is required. For China, 

the policy effort in somewhat larger than the effort measured at the aggregate level and about equally as 

frontloaded. A similar situation both qualitatively and quantitatively applies to the ROW. This means policy 

efforts needed to achieve the IPCC goals in these two blocks are close to worldwide standards. 

The case of India, however, deserves a closer look as the policy efforts necessary to achieve the IPCC CO2 

emissions targets are much more pronounced. By 2030, these policy efforts would have to lead to a reduction 

of 115.7% of 2010 levels while by 2050 the reduction would have to be 156% of such levels. Therefore, the 

policy efforts for decarbonization in India are rather imposing. Furthermore, they are substantially more 

frontloaded than the worldwide average. 

On the other side of this divide are the USA, EU(28), Russia, and Japan, for which the inertia of the emissions 

system suggests that the policy efforts needed to promote the decarbonisation are lower than the IPCC goals 

themselves. In particular, for the EU(28)  our results suggest that policy efforts leading to 25.5% and 65.8% 

reduction in emissions relative to 2010 levels would be needed by 2030 and 2050, respectively. Furthermore, 

such efforts are also substantially less frontloaded. For the remaining countries, the same qualitative patterns 

apply albeit requiring a slightly stronger policy effort. For USA, Russia and Japan, the policy efforts necessary 

to achieve the IPCC 2030 targets are just over one-third of the 2010 emissions: 35.2%, 34.3% and 36.5%, 

respectively. By 2050, they are about three-quarters of 2010 emissions: 75.1%, 74.3%, and 76.7%, 

respectively. 

 

6. Summary, Conclusions, and Policy Implications 

This work uses an ARFIMA model to evaluate the degree of persistence of worldwide CO2 emissions. Our 

empirical results suggest that emissions, both worldwide and for each of the seven regions considered, are 

fractionally integrated processes. Accordingly, the different series show long-memory and the effects of shocks 

tend to dissipate at a slow hyperbolic rate. Our results also suggest that the emissions from the ROW exhibit 

the weakest degree of long-range dependence, while emissions from China and Russia have the strongest 

levels of persistence.  

The long-memory nature of the emissions data implies that any policy shock will have temporary effects albeit 

longer lasting than suggested in a traditional analysis of stationarity. The mean reversal property of our 

estimates, however, implies that the policy effort must be persistent to produce equally persistent effects. This 

is particularly relevant in the framework of the international strategies for achieving carbon neutrality in 2050 

where it will be crucial to promote permanent changes in behavior. 

In terms of the CO2 emissions projections, our approach uses only the information included in the stochastic 

process underlying the baseline data, in a context in which the existing policies remain invariant. From a 

regional perspective, our projections suggest that emissions from China, India and the ROW show a growing 

pattern into the future. For China emissions will peak around 2034 while for India and the ROW emission will 

peak after the our forecast horizon. Conversely, for the remaining regions, the USA, the EU(28), Russia, and 

Japan, projections show a declining pattern of emissions. Of these, the EU (28) achieves the largest 

percentage reduction in its annual flow under our reference forecasts.  
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Significantly, our results clearly suggest that the underlying inertia of the emissions systems is insufficient to 

generate a path of emissions consistent with the intermediate IPCC target for 2030 or with the goal of carbon 

neutrality by 2050. In fact, they suggest quite the opposite as we actually project in several cases CO2 

emissions by 2030 and 2050 increasingly above 2010 levels.  

We measure the policy efforts necessary as the difference between the reductions of CO2 emissions required 

to achieve the IPCC targets and the evolution of emissions as measured by the underling ARFIMA inertial 

projections. For worldwide emissions, the aggregate effort by 2050 is equivalent to 97.4% of 2010 emissions. 

This policy effort is frontloaded as about 60% of such efforts would have to occur before 2030. 

Our results suggest that in order to achieve such policy targets in the USA, EU(28), Russia, and Japan, which 

account for just about 40% of worldwide emissions, the policy efforts required are lower than the IPCC goals 

themselves. Specifically, our results suggest that by 2050, policy efforts would have to lead to reductions of 

75.1%, 65.8%, 76.7%, and 74.3% of 2010 levels. In addition, these policy efforts are clearly less frontloaded 

than the worldwide patterns as only around 45% of the policy efforts would have to occur before 2030. In the 

case of the EU(28), policy efforts required are less pronounced and less frontloaded than in the other three 

regions.  

In the case of China, India and the ROW, which account for about 60% of worldwide emissions, additional 

deliberate policy efforts are necessary leading by 2050 to reductions in emissions of 105.0%, 156.0% and 

111.4%, of the 2010 levels, respectively. The case of India is to be highlighted as policy efforts are not only 

rather severe but also rather dramatically frontloaded as about 74% of the policy efforts would have to occur 

by 2030.  

Our results suggest that the policies toward decarbonization of the economy by 2050 be tailored considering 

the specific characteristics of each one of the different regional components of worldwide CO2 emissions. 

Given the differences in the inertia of emissions in the different regions a one-size fits all approach may not be 

the best approach. More specifically, our results provide insights into each region's required contribution 

towards meeting the IPCC targets. In fact, the contribution of the four regions – the USA, the EU(28), Russia 

and Japan, whose emissions trajectories are decreasing represent 33.9% of worldwide emissions but are 

expected to contribute with only 20.0% of the emissions reductions necessary by 2030. The opposite is true for 

China, India, and ROW for whom meeting the IPCC targets by 2030 will mean a reduction of 28.9% and 

10.3%, and 39.9% of total emissions, respectively while they represent 26.8%, 5.8% and 33.4% of emissions. 

In this sense, trading off emission reductions among these regions maybe an optimal strategy.  

Lastly, consider the fact that the economic and societal impacts of climate change - on productivity, water 

resources, transport, energy production and consumption, migration, tourism and leisure, infrastructure, food 

production capacity, well-being and public health, migration, biodiversity and even political stability - are still far 

from being fully identified and much less internalized into policy decision making [see Tol (2018)].  

Our results contribute to strengthening the need to define and implement transition, adaptation and mitigation 

policies climate and energy, consistent with the goal of carbon neutrality in 2050, fully aligned with both the 

goals of the Paris Agreement and the United Nations Sustainable Development Goals. Such policies are 

urgent, daunting and frontloaded. They cannot also be of a one-size-fits-all type across different regions of the 

world. In this sense, our work is a contribution to the ongoing debate on how different regions can or should 

contribute towards the common goals of achieving carbon neutrality by 2050 as postulated by the IPCC 2018 

targets.  
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8. APPENDIX 

Table A1 – Worldwide CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year      

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit 

Upper 
limit 

2018 36,990 10.6 975 2.6 35,387 38,594 

2019 37,141 11.1 1,243 3.3 35,096 39,186 

2020 37,214 11.3 1,502 4.0 34,743 39,684 

2021 37,255 11.4 1,752 4.7 34,374 40,136 

2022 37,295 11.5 2,045 5.5 33,931 40,660 

2023 37,338 11.6 2,368 6.3 33,442 41,233 

2024 37,381 11.8 2,706 7.2 32,930 41,832 

2025 37,423 11.9 3,049 8.1 32,408 42,437 

2026 37,463 12.0 3,390 9.0 31,886 43,039 

2027 37,499 12.1 3,727 9.9 31,369 43,629 

2028 37,531 12.2 4,057 10.8 30,857 44,204 

2029 37,558 12.3 4,380 11.7 30,353 44,763 

2030 37,581 12.4 4,696 12.5 29,857 45,305 

2031 37,599 12.4 5,004 13.3 29,368 45,829 

2032 37,612 12.5 5,304 14.1 28,887 46,336 

2033 37,620 12.5 5,597 14.9 28,413 46,827 

2034 37,623 12.5 5,884 15.6 27,945 47,301 

2035 37,622 12.5 6,164 16.4 27,483 47,761 

2036 37,617 12.5 6,438 17.1 27,028 48,206 

2037 37,607 12.4 6,706 17.8 26,577 48,637 

2038 37,593 12.4 6,968 18.5 26,132 49,054 

2039 37,576 12.4 7,225 19.2 25,692 49,459 

2040 37,554 12.3 7,477 19.9 25,257 49,852 

2041 37,530 12.2 7,724 20.6 24,826 50,234 

2042 37,502 12.1 7,966 21.2 24,399 50,604 

2043 37,470 12.0 8,204 21.9 23,976 50,964 

2044 37,436 11.9 8,437 22.5 23,557 51,314 

2045 37,398 11.8 8,667 23.2 23,142 51,654 

2046 37,358 11.7 8,893 23.8 22,731 51,985 

2047 37,315 11.6 9,114 24.4 22,323 52,307 

2048 37,270 11.4 9,332 25.0 21,919 52,620 

2049 37,222 11.3 9,547 25.6 21,518 52,925 

2050 37,171 11.1 9,758 26.3 21,121 53,222 
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Table A2 – China CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year      

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 9 781 15.1 436 4.5 9 064 10 497 

2019 9 833 15.7 576 5.9 8 886 10 781 

2020 9 886 16.3 712 7.2 8 715 11 056 

2021 9 935 16.9 843 8.5 8 548 11 322 

2022 9 982 17.4 971 9.7 8 384 11 579 

2023 10 024 17.9 1 096 10.9 8 222 11 826 

2024 10 063 18.4 1 217 12.1 8 061 12 065 

2025 10 097 18.8 1 336 13.2 7 900 12 294 

2026 10 128 19.1 1 452 14.3 7 740 12 515 

2027 10 155 19.5 1 565 15.4 7 580 12 729 

2028 10 178 19.7 1 676 16.5 7 421 12 934 

2029 10 197 20.0 1 784 17.5 7 262 13 132 

2030 10 213 20.2 1 891 18.5 7 104 13 323 

2031 10 227 20.3 1 995 19.5 6 946 13 507 

2032 10 237 20.4 2 096 20.5 6 788 13 685 

2033 10 244 20.5 2 196 21.4 6 631 13 856 

2034 10 248 20.6 2 294 22.4 6 474 14 022 

2035 10 250 20.6 2 390 23.3 6 318 14 182 

2036 10 249 20.6 2 484 24.2 6 163 14 336 

2037 10 247 20.5 2 577 25.1 6 008 14 485 

2038 10 242 20.5 2 667 26.0 5 855 14 629 

2039 10 235 20.4 2 756 26.9 5 702 14 768 

2040 10 226 20.3 2 843 27.8 5 549 14 902 

2041 10 215 20.2 2 929 28.7 5 398 15 032 

2042 10 203 20.0 3 013 29.5 5 247 15 158 

2043 10 189 19.9 3 095 30.4 5 098 15 280 

2044 10 173 19.7 3 176 31.2 4 949 15 397 

2045 10 156 19.5 3 255 32.1 4 802 15 511 

2046 10 138 19.3 3 333 32.9 4 655 15 621 

2047 10 118 19.0 3 410 33.7 4 509 15 727 

2048 10 098 18.8 3 485 34.5 4 365 15 830 

2049 10 076 18.5 3 559 35.3 4 221 15 930 

2050 10 053 18.3 3 632 36.1 4 079 16 027 
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Table A3 – USA CO2 Emissions Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                       

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 5 336 -6.4 284 5.3 4 868 5 803 

2019 5 316 -6.8 346 6.5 4 746 5 885 

2020 5 298 -7.1 404 7.6 4 634 5 962 

2021 5 280 -7.4 458 8.7 4 527 6 033 

2022 5 264 -7.7 509 9.7 4 426 6 101 

2023 5 248 -8.0 558 10.6 4 330 6 166 

2024 5 232 -8.2 605 11.6 4 237 6 227 

2025 5 217 -8.5 650 12.5 4 147 6 286 

2026 5 202 -8.8 694 13.3 4 061 6 343 

2027 5 187 -9.0 736 14.2 3 976 6 398 

2028 5 173 -9.3 777 15.0 3 894 6 451 

2029 5 158 -9.5 817 15.8 3 814 6 502 

2030 5 144 -9.8 856 16.6 3 736 6 552 

2031 5 129 -10.0 894 17.4 3 660 6 599 

2032 5 115 -10.3 931 18.2 3 585 6 646 

2033 5 101 -10.5 967 18.9 3 511 6 691 

2034 5 087 -10.8 1 002 19.7 3 439 6 735 

2035 5 073 -11.0 1 036 20.4 3 368 6 777 

2036 5 059 -11.3 1 070 21.1 3 299 6 818 

2037 5 045 -11.5 1 103 21.9 3 231 6 859 

2038 5 030 -11.8 1 135 22.6 3 163 6 898 

2039 5 016 -12.0 1 167 23.3 3 097 6 936 

2040 5 002 -12.3 1 198 23.9 3 032 6 973 

2041 4 988 -12.5 1 229 24.6 2 967 7 009 

2042 4 974 -12.8 1 259 25.3 2 904 7 044 

2043 4 960 -13.0 1 288 26.0 2 841 7 078 

2044 4 946 -13.2 1 317 26.6 2 780 7 112 

2045 4 932 -13.5 1 345 27.3 2 719 7 145 

2046 4 917 -13.7 1 373 27.9 2 659 7 176 

2047 4 903 -14.0 1 401 28.6 2 599 7 207 

2048 4 889 -14.2 1 428 29.2 2 541 7 238 

2049 4 875 -14.5 1 454 29.8 2 483 7 267 

2050 4 861 -14.7 1 481 30.5 2 425 7 296 
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Table A4 – EU(28) CO2 Emissions Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                         

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 3 441 -12.9 228 6.6 3 065 3 816 

2019 3 414 -13.6 281 8.2 2 952 3 876 

2020 3 389 -14.2 330 9.7 2 846 3 931 

2021 3 365 -14.8 376 11.2 2 746 3 983 

2022 3 341 -15.4 420 12.6 2 650 4 033 

2023 3 319 -16.0 463 13.9 2 558 4 080 

2024 3 298 -16.5 504 15.3 2 469 4 126 

2025 3 277 -17.1 543 16.6 2 384 4 170 

2026 3 256 -17.6 581 17.8 2 301 4 212 

2027 3 237 -18.1 618 19.1 2 220 4 253 

2028 3 217 -18.6 654 20.3 2 142 4 292 

2029 3 198 -19.1 688 21.5 2 066 4 331 

2030 3 180 -19.5 722 22.7 1 992 4 368 

2031 3 162 -20.0 755 23.9 1 920 4 404 

2032 3 144 -20.4 787 25.0 1 849 4 439 

2033 3 127 -20.9 818 26.2 1 780 4 473 

2034 3 110 -21.3 849 27.3 1 713 4 506 

2035 3 093 -21.7 879 28.4 1 647 4 539 

2036 3 076 -22.1 908 29.5 1 582 4 570 

2037 3 060 -22.6 937 30.6 1 519 4 601 

2038 3 044 -23.0 965 31.7 1 457 4 631 

2039 3 028 -23.4 992 32.8 1 396 4 660 

2040 3 012 -23.8 1 019 33.8 1 336 4 688 

2041 2 997 -24.2 1 045 34.9 1 277 4 716 

2042 2 981 -24.5 1 071 35.9 1 220 4 743 

2043 2 966 -24.9 1 096 37.0 1 163 4 769 

2044 2 951 -25.3 1 121 38.0 1 107 4 795 

2045 2 936 -25.7 1 145 39.0 1 052 4 820 

2046 2 922 -26.1 1 169 40.0 998 4 845 

2047 2 907 -26.4 1 193 41.0 945 4 869 

2048 2 893 -26.8 1 216 42.0 893 4 892 

2049 2 878 -27.2 1 238 43.0 841 4 915 

2050 2 864 -27.5 1 261 44.0 791 4 938 
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Table A5 – India CO2 Emissions Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                         

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 2 520 48.2 77 3.0 2 393 2 646 

2019 2 569 51.1 108 4.2 2 391 2 747 

2020 2 613 53.7 139 5.3 2 385 2 841 

2021 2 654 56.1 167 6.3 2 378 2 929 

2022 2 691 58.3 195 7.3 2 370 3 012 

2023 2 725 60.3 222 8.1 2 360 3 089 

2024 2 756 62.1 247 9.0 2 349 3 162 

2025 2 785 63.8 272 9.8 2 337 3 232 

2026 2 811 65.4 296 10.5 2 324 3 299 

2027 2 836 66.8 320 11.3 2 310 3 362 

2028 2 859 68.2 343 12.0 2 296 3 423 

2029 2 881 69.5 365 12.7 2 280 3 482 

2030 2 901 70.7 387 13.3 2 265 3 538 

2031 2 920 71.8 409 14.0 2 248 3 593 

2032 2 938 72.8 430 14.6 2 231 3 645 

2033 2 955 73.8 450 15.2 2 214 3 696 

2034 2 970 74.7 471 15.8 2 196 3 745 

2035 2 985 75.6 491 16.4 2 178 3 792 

2036 2 999 76.4 510 17.0 2 159 3 838 

2037 3 012 77.2 530 17.6 2 140 3 883 

2038 3 024 77.9 549 18.1 2 121 3 926 

2039 3 035 78.5 567 18.7 2 102 3 968 

2040 3 046 79.1 586 19.2 2 082 4 009 

2041 3 055 79.7 604 19.8 2 062 4 049 

2042 3 065 80.3 622 20.3 2 042 4 087 

2043 3 073 80.8 639 20.8 2 022 4 125 

2044 3 081 81.3 657 21.3 2 001 4 162 

2045 3 089 81.7 674 21.8 1 980 4 197 

2046 3 096 82.1 691 22.3 1 959 4 232 

2047 3 102 82.5 707 22.8 1 938 4 266 

2048 3 108 82.8 724 23.3 1 917 4 299 

2049 3 114 83.2 740 23.8 1 896 4 331 

2050 3 119 83.4 756 24.2 1 875 4 363 
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Table A6 – Russia CO2 Emissions Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                        

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 1 572 -5.2 119 7.6 1 375 1 768 

2019 1 551 -6.5 166 10.7 1 278 1 824 

2020 1 556 -6.1 210 13.5 1 210 1 902 

2021 1 544 -6.9 253 16.4 1 128 1 960 

2022 1 524 -8.1 294 19.3 1 040 2 008 

2023 1 528 -7.8 334 21.8 979 2 077 

2024 1 523 -8.1 361 23.7 930 2 117 

2025 1 517 -8.5 385 25.3 884 2 149 

2026 1 510 -8.9 406 26.9 842 2 178 

2027 1 503 -9.3 426 28.4 802 2 204 

2028 1 496 -9.8 445 29.8 763 2 228 

2029 1 488 -10.2 464 31.2 725 2 251 

2030 1 481 -10.7 481 32.5 689 2 273 

2031 1 474 -11.1 498 33.8 654 2 294 

2032 1 466 -11.5 515 35.1 620 2 313 

2033 1 459 -12.0 531 36.4 586 2 332 

2034 1 452 -12.4 546 37.6 553 2 351 

2035 1 445 -12.8 562 38.9 522 2 369 

2036 1 438 -13.2 576 40.1 490 2 386 

2037 1 431 -13.7 591 41.3 460 2 403 

2038 1 424 -14.1 605 42.4 430 2 419 

2039 1 417 -14.5 618 43.6 401 2 434 

2040 1 411 -14.9 632 44.8 372 2 449 

2041 1 404 -15.3 645 45.9 344 2 464 

2042 1 397 -15.7 657 47.0 316 2 478 

2043 1 391 -16.1 670 48.2 289 2 492 

2044 1 384 -16.5 682 49.3 263 2 506 

2045 1 378 -16.9 694 50.4 237 2 519 

2046 1 371 -17.3 705 51.4 211 2 531 

2047 1 365 -17.6 717 52.5 186 2 544 

2048 1 359 -18.0 728 53.6 162 2 556 

2049 1 353 -18.4 739 54.6 138 2 568 

2050 1 346 -18.8 749 55.7 114 2 579 
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Table A7 – Japan CO2 Emissions Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                        

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 1 188 -2.0 83 6.9 1 052 1 323 

2019 1 180 -2.6 102 8.6 1 012 1 347 

2020 1 172 -3.3 120 10.3 974 1 370 

2021 1 165 -3.8 138 11.8 939 1 391 

2022 1 158 -4.4 154 13.3 905 1 412 

2023 1 152 -4.9 170 14.7 872 1 431 

2024 1 146 -5.4 185 16.2 841 1 450 

2025 1 139 -6.0 200 17.5 811 1 468 

2026 1 133 -6.5 214 18.9 781 1 485 

2027 1 127 -7.0 228 20.2 753 1 501 

2028 1 121 -7.5 241 21.5 725 1 517 

2029 1 115 -8.0 254 22.7 698 1 532 

2030 1 109 -8.5 266 24.0 671 1 547 

2031 1 103 -8.9 278 25.2 645 1 561 

2032 1 097 -9.4 290 26.4 620 1 574 

2033 1 091 -9.9 302 27.6 595 1 587 

2034 1 085 -10.4 313 28.8 571 1 600 

2035 1 080 -10.9 324 30.0 547 1 612 

2036 1 074 -11.4 334 31.1 524 1 624 

2037 1 068 -11.9 345 32.3 501 1 635 

2038 1 062 -12.3 355 33.4 478 1 646 

2039 1 056 -12.8 365 34.5 456 1 656 

2040 1 050 -13.3 374 35.6 435 1 666 

2041 1 045 -13.8 384 36.7 413 1 676 

2042 1 039 -14.3 393 37.8 392 1 685 

2043 1 033 -14.7 402 38.9 372 1 695 

2044 1 027 -15.2 411 40.0 351 1 703 

2045 1 022 -15.7 420 41.1 332 1 712 

2046 1 016 -16.1 428 42.1 312 1 720 

2047 1 010 -16.6 436 43.2 293 1 728 

2048 1 005 -17.1 444 44.2 274 1 736 

2049 999 -17.5 452 45.3 255 1 743 

2050 993 -18.0 460 46.3 236 1 750 
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Table A8 – ROW CO2 Emissions Forecasts for 2018-2050 

Years 

Total co2 
emissions 

forecasts (ft)                       
(Mt) 

Distançe to 
reference 
year: 2010                        

(%) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 12 408 15.7 435 3.5 11 692 13 124 

2019 12 476 16.4 581 4.7 11 520 13 433 

2020 12 543 17.0 715 5.7 11 367 13 718 

2021 12 605 17.5 838 6.6 11 227 13 983 

2022 12 663 18.1 953 7.5 11 096 14 230 

2023 12 717 18.6 1 061 8.3 10 972 14 462 

2024 12 768 19.1 1 164 9.1 10 853 14 683 

2025 12 816 19.5 1 263 9.9 10 739 14 893 

2026 12 860 19.9 1 358 10.6 10 627 15 093 

2027 12 902 20.3 1 449 11.2 10 518 15 286 

2028 12 941 20.7 1 538 11.9 10 412 15 471 

2029 12 978 21.0 1 624 12.5 10 308 15 649 

2030 13 013 21.4 1 707 13.1 10 205 15 821 

2031 13 046 21.7 1 789 13.7 10 104 15 988 

2032 13 077 21.9 1 868 14.3 10 004 16 149 

2033 13 105 22.2 1 946 14.8 9 905 16 306 

2034 13 133 22.5 2 022 15.4 9 807 16 458 

2035 13 158 22.7 2 096 15.9 9 711 16 606 

2036 13 182 22.9 2 169 16.5 9 615 16 749 

2037 13 205 23.1 2 240 17.0 9 520 16 890 

2038 13 226 23.3 2 310 17.5 9 426 17 026 

2039 13 246 23.5 2 379 18.0 9 333 17 159 

2040 13 265 23.7 2 447 18.4 9 240 17 289 

2041 13 282 23.9 2 513 18.9 9 148 17 416 

2042 13 298 24.0 2 579 19.4 9 057 17 540 

2043 13 314 24.2 2 643 19.9 8 966 17 661 

2044 13 328 24.3 2 707 20.3 8 876 17 780 

2045 13 341 24.4 2 769 20.8 8 787 17 896 

2046 13 353 24.5 2 831 21.2 8 697 18 010 

2047 13 365 24.6 2 891 21.6 8 609 18 121 

2048 13 375 24.7 2 951 22.1 8 521 18 230 

2049 13 385 24.8 3 010 22.5 8 433 18 337 

2050 13 394 24.9 3 069 22.9 8 346 18 442 
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