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Abstract  

Artificial Intelligence (AI) has emerged as a focal point for researchers and industry experts, 

continuously redefined by technological advancements. AI encompasses the development of 

machines impersonating human cognitive processes, such as learning, reasoning, and self-

correction. Its wide-ranging applications across industries have showcased its increasing 

precision and efficiency, and Agriculture has also embraced AI to increase income and 

efficiency. In this regard a literature review to comprehensively understand the concept, 

existing research, and projects related to AI in agriculture was performed. Moreover, this paper 

approaches the potential of AI in agriculture practically, addressing the emergence of new 

methods and practices, using a case study approach, and analyzing the perceptions of impacts 

of AI in agriculture, from experts, academics, and agriculture professionals regarding the 

application of AI. It contributes to real application development, offering insights that resonate 

within academic and practical dimensions. 

 

JEL Classification: D20 General; Q16 R&D, Agricultural Technology 

Keywords: Artificial Intelligence, Agriculture, Efficiency, Quantitative analysis 
 

 

 

 

 

 

 

 

 
 

Note: This article is sole responsibility of the authors and do not necessarily reflect 

the positions of GEE or the Portuguese Ministry of Economy. 

 
1  Iscte Instituto Universitário de Lisboa 



  

2 
 

 

1. Introduction  

AI stands as a technological development that has captivated both academic discourse and 

practical applications across diverse industries. Its evolution has been punctuated by redefined 

definitions, adapting to technological advancements (Kok et al., 2002). AI represents a branch 

of computer science dedicated to crafting machines capable of emulating human-like cognitive 

functions, encompassing learning, reasoning, and self-correction. 

The far-reaching implications of AI are manifest across various sectors, with its penetration 

into industries such as manufacturing, healthcare, marketing, finance, and tourism (Dwivedi 

et al., 2021). However, one sector that can witness a transformative impact is agriculture, 

where AI's applications can potentiate a new era of innovation, efficiency, and sustainability. 

In explaining AI's role in agriculture, it becomes imperative to understand its overarching 

definition and how it pertains to this domain. Defined broadly, AI in agriculture represents a 

confluence of technology and methodology aiming to revolutionize conventional agricultural 

practices. Its core objective is to expand, automate, and optimize farming operations, thereby 

enhancing productivity, mitigating risks, and ensuring sustainable food production. 

The significance of agriculture as a global economic basis is very high staggering global 

value of $3.6 trillion and a consistent contribution of 4% to the global GDP over the past two 

decades, the agricultural sector highlights the socio-economic dimensions of numerous nations 

(FAO, 2022). However, this sector has several challenges, ranging from unpredictable weather 

patterns, and crop-damaging pests and diseases to the deleterious impacts of climate change 

and desertification (Komarek et al., 2020). These challenges create some threats to agricultural 

productivity, exacerbating the already mounting pressures due to an expanding of global 

population. 

At the forefront of these challenges stands the United Nations' 2030 Sustainable Goals, 

notably the Zero-Hunger program, which underscores the imperative of achieving food security 

sustainably (United Nations, 2015). Against this backdrop, the integration of AI into 

agricultural practices emerges as an instrumental strategy, offering novel methodologies and 

technological solutions to address these challenges. 

The combination of innovation technology, digitalization, and AI stands tries to mitigate the 

challenges that agriculture faces (Yela Aranega et al., 2022). This paradigm change indicates 

the need to reevaluate established agricultural practices and technologies, with a renewed 

emphasis on maximizing the production of crops, minimizing resource use, and decreasing 

labor costs. 

Moreover, the strategic significance of AI in agriculture extends beyond efficiency gains. It 

fundamentally reshapes the agricultural business models, opening new possibilities for growth, 

innovation, and sustainability (Toniolo et al., 2019). These models serve as framework stating 

how value is created and delivered within the agricultural ecosystem. 



  
  

3 
 

However, despite the interest and the potential of AI in reshaping agricultural paradigms, 

the existing literature on AI's role in agriculture remains a work-in-progress (Cavazza et al., 

2023). While there is a proliferation of studies examining the potential synergies between AI 

and agriculture, the depth of scholarly exploration concerning its implications on agricultural 

business models remains relatively limited. 

The literature on AI in agriculture largely encompasses case studies that evaluate and 

discuss technological solutions and algorithms, spanning diverse agricultural domains 

(Panpatte and Ganeshkumar, 2021). Yet, the scarcity of success stories within the literature, 

elucidating tangible benefits reaped by farms leveraging AI technologies, is evident (Sood et 

al., 2022). 

While the literature underscores the necessity of coupling AI with complementary 

technologies like IoT (Internet of things) and robotics to create a cohesive digital ecosystem 

in agriculture (Chiles et al., 2021; Dal Mas et al., 2023), it also delineates emerging farming 

techniques such as vertical farming, aquaculture, insect breeding, and precision agriculture 

(Davies and Wilson, 2020; Saad et al., 2021). 

AI also have the potential to address multifaceted sustainability issues, including reducing 

agricultural pollution, optimizing resource utilization, and fostering environmentally friendly 

practices (Bogomolov et al., 2021; Rao et al., 2018). However, several gaps persist in the 

academic literature, as the shortage of comprehensive AI-driven business models in agriculture 

(Cavazza et al., 2023). Despite the emergence of technological solutions and algorithms, the 

absence of real-world case studies showing AI's potential implications on the future of 

agriculture remains a reality. 

In response to this call for in-depth analysis rooted in real-world scenarios to contribute for 

the formulation, implementation and evaluation of public policies, this research adopts a multi-

case study methodology. It will provide an in-depth exploration of AI's application in agriculture 

and its impacts. 

The subsequent sections of this article delineate the current literature, develop the research 

question, elucidate the chosen methodology, present key findings, and engage in 

comprehensive discussions regarding recommendations for policy, implications, and limitations 

of the research. 
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2. Literature review 

2.1 Conceptualization of AI in Agriculture    

Artificial Intelligence has garnered significant attention from both scholars and practitioners 

in recent years. Defined broadly, AI stands as a branch of computer science aiming to develop 

machines capable of human-like cognitive processes (Kok et al., 2002). Its applications span 

various industries and notably, agriculture (Dwivedi et al., 2021). 

The agricultural sector, with a global value of $3.6 trillion and a consistent contribution of 

4% to the global GDP, holds immense significance (FAO, 2022). However, it faces formidable 

challenges—unpredictable risks like weather conditions, crop-destroying pests, and diseases, 

coupled with the adverse impacts of climate change and desertification (Komarek et al., 2020; 

FAO, 2022). The need for sustainable food security has been highlighted as a crucial goal by 

the United Nations (United Nations, 2015). 

In response to these challenges, technology, digitalization, and AI emerge as potential 

solutions (Yela Aranega et al., 2022). The integration of AI in agriculture aims not only to 

address these challenges but also to enhance productivity and reduce human effort (Saad et 

al., 2021). The strategic role of AI in agriculture becomes apparent considering its potential to 

reshape existing methodologies and technologies for maximizing crop yield and ensuring 

sustainable food production (FAO, 2022). 

AI's impact on agricultural business models stands as a focal point in this evolving landscape 

(Toniolo et al., 2019). Defined as the framework through which organizations create value, 

business models in agriculture are poised for transformation through AI integration (Bagnoli 

et al., 2019; Bagnoli et al., 2018; Biloslavo et al., 2018). This transformation not only 

addresses sector-specific challenges but also aligns with sustainability objectives (Biancone et 

al., 2022; Blackmore, et al., 2015). 

Sustainability remains a pivotal theme in this context, with AI-driven solutions showing 

promise in supporting environmentally friendly practices (Bogomolov et al., 2021; Rao et al., 

2018). 

 

2.2 AI Technology applied to agriculture 

Precision Agriculture, enabled by AI, empowers farmers to make data-driven decisions by 

harnessing information from diverse sources such as satellite imagery, drones, sensors, and 

weather forecasts (Qin et al., 2019; Castellini et al., 2016). Through the utilization of machine 

learning algorithms, farmers can optimize irrigation, fertilization, and pesticide application, 

resulting in heightened crop yields, diminished resource usage, and enhanced sustainability. 

Crop Monitoring and Disease Detection leverage computer vision and machine learning 

techniques to analyze images of crops captured by drones or satellites (Mohanty et al., 2016; 

Castellini et al., 2016). By identifying patterns and anomalies in plant health and growth, AI 
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systems can swiftly detect diseases, pests, nutrient deficiencies, and other issues, enabling 

farmers to take timely actions to mitigate losses. 

Predictive Analytics plays a crucial role as AI models analyze historical data on weather 

patterns, soil conditions, crop yields, and market prices to forecast future trends (Hansen, 

2002; Tao et al., 2018). These forecasts aid farmers in planning planting schedules, managing 

inventories, optimizing resource allocation, and minimizing risks associated with climate 

variability and market fluctuations. 

Robotic Farming is on the rise with AI-powered robots and autonomous vehicles being 

developed to execute various tasks on the farm (Li & Wang, 2017). These tasks include planting 

seeds, applying fertilizers and pesticides, weeding, and harvesting crops, thereby operating 

with precision and consistency, reducing labour costs, and increasing operational efficiency. 

Supply Chain Optimization, facilitated by AI technology, streamlines the entire agricultural 

supply chain from production to distribution (Tao et al., 2018). Machine learning algorithms 

analyse data on demand forecasts, transportation routes, storage conditions, and market 

dynamics to reduce waste and ensure the timely delivery of agricultural products to consumers. 

In Crop Breeding and Genomics, AI techniques, including genetic algorithms and deep 

learning, accelerate the breeding of crops with desirable traits (Zhang et al., 2016). By 

identifying genetic markers associated with these traits, breeders can efficiently develop 

improved crop varieties. 

Finally, AI-powered Farm Management Systems integrate data from various sources, 

automate routine tasks, and provide insights tailored to specific farm conditions (Li & Wang, 

2017). These systems aid farmers in planning, monitoring, and decision-making, optimizing 

resource utilization, and maximizing profitability. 

2.3 Creating a model of analysis 

The analysis model provided underscores a comprehensive approach to bolstering 

agricultural productivity and sustainability by integrating advanced technologies and 

management practices. Each component plays a pivotal role in this endeavor. 

Increased Production Efficiency is central to optimizing agricultural operations by leveraging 

advancements in machinery, automation, and resource utilization to enhance productivity, 

minimize waste, and streamline processes. This entails maximizing the use of available 

resources such as land, labor, and inputs (Rejesus, Zamora, & Reyes, 2003). 

Precision in Agricultural Management harnesses technology like GPS, sensors, and drones 

to precisely manage farming variables such as planting, irrigation, fertilization, and pest 

control. By accurately targeting inputs and actions, farmers can optimize yields while 

minimizing costs and environmental impact (Gebbers & Böhner, 2010). 

Harvest Optimization strategies and technologies are geared toward maximizing yield and 

quality. This includes adopting timely harvesting practices, employing post-harvest handling 

techniques, and utilizing equipment such as harvesters and storage facilities to minimize losses 

and maintain product quality (Ferguson & Burras, 2009). 
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Intelligent Water Resource Management acknowledges the critical role of water in 

agriculture and employs technology to monitor, conserve, and efficiently distribute water for 

irrigation. Techniques like drip irrigation, soil moisture sensors, and water recycling systems 

optimize water usage while sustaining crop growth (Khan & Qazi, 2012). 

Improvement in Quality focuses on enhancing agricultural products through better farming 

practices, handling methods, and technologies. By adhering to higher quality standards, 

farmers can increase market value, reduce waste, and meet consumer demands for superior 

products (Doerge, 1999). 

Decision Support systems provide farmers with data-driven insights and recommendations 

for informed decision-making. By analyzing data, modelling scenarios, and employing 

predictive algorithms, these systems assist in crop selection, planting schedules, resource 

allocation, pest management, and risk mitigation strategies, thereby enhancing overall farm 

performance and profitability (Singh et al., 2014). 

 

 

Figure 1 – Model of analysis 

From the literature emerged this model of analysis (figure 1) which will guide the empirical 

research and the answer to the main research question:  RQ: What are the main differences 

in perceptions of Experts and academics versus professionals of the agriculture sector 

regarding AI impacts in Agriculture? The following sections will be developed to reply to this 

question. 

 

3. EU Public Policies to Promote the Digitalization of Agriculture 

European Union (EU) has been actively developing policies and initiatives to promote the 

use of Artificial Intelligence in agriculture, aiming to foster innovation, sustainability, and 

Increased 
Production 
Efficiency

Precision in 
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Management 
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Resource 

Management 
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efficiency in the agricultural sector. Some existing EU policies related to AI in agriculture 

include: 

Table 1 – European Union Policies to Promote the Digitalization of Agriculture 

European AI Strategy: The EU's AI Strategy focuses on fostering the development and 

deployment of AI across various sectors, including agriculture. 

It aims to support research, innovation, and ethical AI use while 

ensuring compliance with EU values and regulations 

Common Agricultural 

Policy (CAP) Reform:  

The CAP, a major EU policy for agriculture and rural 

development, has been undergoing reforms to incorporate 

digitalization, including AI technologies. The updated CAP seeks 

to support digital transformation in agriculture, encouraging the 

adoption of innovative technologies for sustainable and efficient 

farming practices. 

Digital Europe 

Programme:  

This EU initiative allocates funding to support digital 

transformation in various sectors, including agriculture. It aims 

to enhance digital skills, infrastructure, and technologies, 

fostering the adoption of AI and other digital tools in farming 

practices. 

Horizon Europe:  The EU's research and innovation framework program, Horizon 

Europe, includes funding opportunities for AI-related projects in 

agriculture. It supports research, innovation, and collaboration 

to develop AI-driven solutions for sustainable agriculture, 

focusing on areas like precision farming and smart agri-food 

systems. 

European Data 

Strategy:  

The EU is working on a comprehensive data strategy to facilitate 

the sharing and use of agricultural data, which is crucial for AI 

applications in farming. Efforts to create common data spaces 

and standards aim to unlock the potential of AI in agriculture by 

enabling data-driven decision-making. 

Ethical Guidelines for 

Trustworthy AI:  

The EU has been developing ethical guidelines and regulatory 

frameworks for AI. These guidelines emphasize the importance 

of ethical AI design, transparency, accountability, and human 

oversight, which are relevant considerations in AI applications 

for agriculture. 

European Green Deal:  The EU's Green Deal sets ambitious sustainability goals, 

including the reduction of pesticide and fertilizer use. AI 
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technologies in agriculture, such as precision farming, can 

contribute to achieving these goals by optimizing resource 

utilization and minimizing environmental impacts. 

 

These policies and initiatives reflect the EU's commitment to fostering AI innovation in 

agriculture while ensuring responsible and ethical use. They aim to support farmers, promote 

sustainable practices, and drive digital transformation in the agricultural sector across member 

states. 

 

4. The Context of AI in Agriculture in Portugal 

4.1 AgTech Companies and Startups in Portugal 

Modern agriculture is shaped by technological innovation changing the traditional across 

Portugal. Several technological startups have emerged redefining agricultural operations with 

cutting-edge technologies. From software platforms fostering collaboration to environmental 

sustainability initiatives, these startups are pioneering a revolution in the agriculture sector. 

PROGROW stands tall as a software company harnessing the power of state-of-the-art IoT 

connectivity and data analytics. Its web platform, dedicated to industrial frontline operations, 

offers a transformative experience, ushering any equipment or workstation into the realm of 

online efficiency. Similarly, WISECROP, an Online Agricultural Operating System, orchestrates 

predictive indicators and business management tools, centralizing farm management and 

amplifying seasonal results. This convergence of technology enables access to vital information 

on crops, equipment, and irrigation, both on and off the field. 

ABOUT AQUA FOOD, an ambitious sustainability project, aspires to produce and 

commercialize healthy, premium foods with maximal environmental responsibility. Their 

visionary endeavor metamorphosed into the Bio-Agro Concept startup, epitomizing a futuristic 

approach to food production. On a parallel trajectory, AGROINSIDER emerges as a guiding 

light within the agribusiness value chain. Their suite of consulting and technological tools, 

operating on SaaS solutions, champions the preservation of the invaluable asset—Natural 

Capital. 

Navigating the intricate web of agricultural commerce, AGRI MARKETPLACE emerges as a 

B2B cloud-based platform facilitating real transactions of agricultural food crops. In this digital 

marketplace, fair food trade blossoms, simplified, expedited, and transparent, bridging the gap 

between Farmers and Agro-Industry Buyers. Similarly, WINE WITH SPIRIT, a Winetech 

company, intertwines innovation with an ancient industry, producing award-winning 

Portuguese wines that traverse four continents. 

However, beyond technology-driven enterprises, institutions like CREDITO AGRICOLA have 

evolved from their agricultural roots into universal financial and insurance groups. Their 

practice of proximity and relationships continues to nurture and support the sector. 

Complementing this financial landscape, AGRISTARBIO steps in with its organic mineral 
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fertilizer derived from biosolids, fostering sustainability amid the intensifying need for food and 

feedstock. 

ROVENSA specializes in sustainable agricultural solutions, combating the environmental 

footprint of farming practices. Their commitment to safe, healthy, and nutritious food 

production resonates across a spectrum of companies like FARMCONTROL, offering IoT cloud 

software for monitoring agricultural operations, and FLOW TECHNOLOGY, simplifying industry 

with a manufacturing execution system. 

Venturing into specialized domains, AQUAPONICS IBERIA champions sustainable, efficient 

aquaponics technologies, training and providing consulting services. Meanwhile, AGRIW takes 

center stage with its Agriculture 4.0 Smart Farming Solution, rooted in Artificial Intelligence 

and Machine Learning, while TERRAPRIMA champions environmental services provided by 

agro-forestry activities. 

Echoing the technological chorus, HARKER lends support to the milk production industry, 

promoting health, animal welfare, and farm development. Similarly, BIOSANI steps in with 

biotechnical pheromones for plant protection in Organic Agriculture, blending expertise with 

youthful dynamism. 

In the realm of quality control, CALSEG assumes a pivotal role, offering inspection services 

for agri-food products. Simultaneously, IBERO FOREST MASSA pioneers the production of 

biocarbon, innovating ecological technology through biomass transformation. 

Meanwhile, AGRICIENCIA offers information management and viticulture services, and 

HIDROSOPH consults in irrigation management and environmental services, underlining a 

collective commitment to sustainability. MAGAGER, entrenched in history since the 1930s, and 

CUDELL, a platform advocating environmental stewardship, add unique layers to this mosaic 

of agricultural innovation. 

Each organization, whether a technology-driven business or an agent of environmental 

sustainability, plays a part in the innovation process of AI application to agriculture sector in 

Portugal. 

4.2 Portugal Participation in Horizon Europe Projects to promote 

Digitalisation in Agriculture 

Portugal participated in several Horizon Europe projects focused on agriculture, contributing 

expertise, research, and innovation in various fields related to sustainable farming practices, 

digitalization, and technological advancements. While the participation in these projects might 

evolve, here are a few examples of Horizon Europe projects where Portugal has been involved 

in the agricultural sector (table 2): 

Table 2 – Projects Funded by EU to Promote the Digitalization of Agriculture 

Project Portuguese Consortium 

SmartAgriHubs: Portugal was part of the 

SmartAgriHubs project, contributing to the 

establishment of Digital Innovation Hubs (DIHs) in 

CONSULAI, TEKEVER, EDIA 

(Empresa de Desenvolvimento e 

Infra-Estruturas do Alqueva), 
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agriculture. These hubs aimed to facilitate the digital 

transformation of the agricultural sector by promoting 

the adoption of innovative technologies, including AI, 

IoT, and robotics, among farmers and agribusinesses. 

UNPARALLEL Innovation, 

Instituto Nacional de 

Investigação Agrária e 

Veterinária, Centro Operativo e 

de Tecnologia de Regadio, 

Associação de Beneficiários da 

Obra da Vigia, e FreedomGrow. 

IoF2020 (Internet of Food & Farm): Portugal 

participated in the IoF2020 project, which focused on 

integrating Internet of Things (IoT) technologies in 

agriculture. This project aimed to enhance farming 

practices, sustainability, and efficiency by leveraging IoT 

solutions, which might include AI-driven analytics and 

decision support systems. 

UNPARALLEL INNOVATION LDA 

AGINFRA+: Portugal contributed to the AGINFRA+ 

project, which aimed to develop an open data 

infrastructure for the agricultural community. This 

project sought to provide tools and services, including 

AI-driven analytics and data management solutions, to 

support agricultural research and innovation. 

INESC-ID (Instituto de 

Engenharia de Sistemas e 

Computadores, Investigação e 

Desenvolvimento), LNEC 

(Laboratório Nacional de 

Engenharia Civil) 

FutureAgriculture: Portugal might have participated in 

projects like FutureAgriculture, emphasizing sustainable 

intensification in agriculture through technology 

adoption. This project likely explored the application of 

AI, big data analytics, and precision agriculture to 

enhance agricultural productivity while minimizing 

environmental impacts. 

INIAV, Instituto Superior Técnico 

(IST) 

NEFERTITI: Portugal might have been involved in 

NEFERTITI, focusing on knowledge exchange and 

innovation uptake among farmers in Europe. While not 

primarily centered on AI, this project aimed to integrate 

innovative technologies, including digital solutions and 

precision agriculture, to improve farming practices. 

Agroop 

 

Portugal's involvement in these Horizon Europe projects demonstrates its commitment to 

leveraging technological advancements and innovation for the benefit of its agricultural sector. 

However, participation might have varied across different projects and initiatives within Horizon 
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Europe, and new projects may have emerged since my last update. For the most current and 

detailed information on Portugal's participation in Horizon Europe projects related to 

agriculture and AI. 

 

5. Methodology 

Given the aim of exploring AI applications in agriculture in Portugal, the methodology for 

conducting this research will follow the next steps: 

1. Research Objective Clarification: Clear research objectives that outline the specific 

aspects of AI in agriculture, to guide the entire research process. 

2. Case Study Selection: Identify and select two innovative case studies in Portugal that 

have integrated AI technologies or innovative digital solutions in their operations. This case 

study selection should align with the research objectives and provide a representative example 

for analysis. 

3. Data Collection: Utilize a mixed-method approach for data collection, including 

qualitative and quantitative data. Qualitative methods involve document analysis based on the 

theoretical model developed in this research to gather insights into AI implementation; 

Quantitative methods will consider a sample of observations by questionnaire (table 4) to 

analyse perceptions of the impacts of AI application to Agriculture. 

4. Data Analysis: For qualitative data content analysis will be used to identify recurring 

themes or patterns. Quantitative data will be statistically analysed. 

5. Recommendations: Summarize the findings and provide recommendations based on 

the study's outcomes, highlighting best practices, potential areas for improvement, and 

implications for public policies in the agricultural sector. 

 

6. Empirical Study – The Impact of AI in the Agribusiness in Portugal 

6.1 Qualitative analysis 

A) Portuguese Olive Oil Case Study 

Artificial Intelligence can be a vital resource in the production of olive oil in Portuguese 

agriculture, bringing with it a range of significant benefits. These technological advances can 

transform traditional agricultural practices, providing substantial improvements in various key 

areas of olive tree cultivation and olive oil production. The integration of artificial intelligence 

in olive oil production in Portugal not only drives efficiency and quality but also promotes a 

more sustainable and environmentally conscious approach. These benefits can significantly 

contribute to the competitiveness and excellence of the country's olive oil sector. 

Using the model created based on the literature review the analysis of the application of AI 

in the Portuguese olive oil production is as follows: 

1. Increased Production Efficiency: Esporão, a prominent olive oil producer, implements 

AI-driven systems that analyse historical weather data, soil moisture, and plant health metrics. 

This data-driven approach allows them to precisely schedule irrigation, fertilization, and other 
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cultivation practices, resulting in optimized resource allocation and increased olive oil yield 

without compromising quality. 

2. Precision in Agricultural Management: Sovena, a leading olive oil company, integrates 

AI-based drones equipped with imaging technology to monitor olive groves. These drones 

identify specific areas affected by pests or diseases, enabling targeted interventions that 

minimize the use of pesticides and herbicides while maintaining a healthy and sustainable olive 

orchard. 

3. Harvest Optimization: Cobrançosa, an olive oil cooperative, employs AI algorithms that 

process data from temperature sensors, humidity levels, and fruit ripeness. This technology 

aids in predicting the optimal harvest time, ensuring that olives are picked at their peak, 

contributing to enhanced oil quality and efficiency during harvesting. 

4. Intelligent Water Resource Management: Herdade das Servas, utilizing AI-powered 

irrigation systems, measures soil moisture levels and climate data. This technology allows for 

precise water delivery to olive trees, reducing water wastage and ensuring the trees receive 

adequate hydration for optimal growth while conserving a scarce resource. 

5. Improvement in Quality: Oliveira da Serra employs AI-based sensory analysis tools to 

assess olive oil quality. By analysing chemical compositions and sensory attributes, they ensure 

that only the highest-quality olive oil, meeting strict standards, reaches the market, enhancing 

consumer trust and satisfaction. 

6. Decision Support: The National Association of Olive Growers utilizes AI-powered 

platforms that process extensive datasets on market trends, climate patterns, and consumer 

preferences. This data-driven insight equips farmers with valuable information for informed 

decision-making on plantation management, production strategies, and market positioning to 

optimize their olive oil business. 

 

B) Portuguese Winery Case Study 

In winery, AI stands as an invaluable asset revolutionizing the production processes. Its 

implementation in Portuguese has reshaped conventional practices and significantly enhanced 

various facets of grape cultivation and wine production. It leads to higher efficiency and quality 

but also leads to a more sustainable and environmentally conscious approach.  

Using the model created based on the literature review the analysis of the application of AI 

in the Portuguese winery is as follows: 

1. Enhanced Production Efficiency: Quinta do Vallado, a renowned winery in Portugal's 

Douro Valley, utilizes AI-powered systems to analyse weather data, soil moisture, and vine 

health. This data-driven approach enables them to optimize vineyard management, resulting 

in increased grape yield and improved wine quality. 

2. Precision in Agricultural Management: Symington Family Estates employs AI-powered 

drones equipped with imaging technology to identify specific vineyard areas affected by pests 



  
  

13 
 

or diseases. This targeted approach allows for precise intervention, reducing the need for 

chemical treatments and promoting sustainable vineyard practices. 

3. Harvest Optimization: Herdade do Rocim, an Alentejo winery, utilizes AI algorithms to 

analyze grape maturity and weather conditions. This technology assists in determining the 

optimal time for grape harvesting, ensuring that the grapes are picked at their peak ripeness 

for superior wine production. 

4. Intelligent Water Resource Management: Adega Mayor, located in the Alentejo region, 

implements AI-driven irrigation systems that use sensors to monitor soil moisture levels. This 

data guides precise irrigation, ensuring the vines receive adequate water without unnecessary 

waste, contributing to sustainable water management. 

5. Improvement in Quality: Casa Ferreirinha employs AI-powered quality control systems 

that analyse chemical compositions and sensory characteristics of wines at different stages of 

production. This meticulous analysis ensures consistency and high-quality standards in their 

wine offerings. 

6. Decision Support: Wine Intelligence, a market research company, provides Portuguese 

winemakers with AI-generated insights based on consumer preferences, market trends, and 

competitor analysis. This information assists wineries in making informed decisions regarding 

production volumes, marketing strategies, and product positioning. 

 

6.2 Comparative analysis – qualitative approach 

To make a comparative analysis of the case studies a table (3) was created following the 

dimensions of the model of analysis:  

Table 3 – Comparative analysis of the case studies 

 Wine case study Olive Oil case study 

Increased Production 

Efficiency:  

AI optimizes grape 

cultivation by meticulously 

managing vineyards. By 

analysing diverse data sets 

encompassing weather 

patterns, soil conditions, and 

fertilization, AI streamlines 

resource allocation, leading 

to heightened productivity 

and superior wine quality 

during harvests. 

AI is optimizing the olive 

tree cultivation process, 

enabling more effective 

management of 

plantations. It analyses 

data on weather 

conditions, fertilization, 

and soil management, 

allowing precise resource 

optimization, and 

resulting in higher 

productivity and quality in 

harvests. 
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Precision in 

Agricultural 

Management:  

AI systems facilitate precise 

management of vineyard 

threats such as pests, 

diseases, and weeds. This 

precision minimizes reliance 

on chemical interventions, 

fostering sustainable 

practices and mitigating 

environmental impacts. 

AI systems allow for a 

more precise approach to 

managing pests, 

diseases, and weeds. This 

precision reduces reliance 

on pesticides and 

herbicides, promoting 

more sustainable 

agricultural practices and 

minimizing environmental 

impacts. 

Harvest 

Optimization:  

AI predicts the ideal time for 

grape harvesting, 

considering factors like 

grape ripeness and weather 

forecasts. This predictive 

capability ensures efficient 

harvesting, resulting in 

elevated wine quality. 

AI can predict the optimal 

time for olive harvesting 

based on a variety of 

factors, such as fruit 

maturity and weather 

conditions. This results in 

more efficient harvesting 

and superior olive oil 

quality. 

Intelligent Water 

Resource 

Management:  

In a landscape where water 

conservation is pivotal, AI 

empowers smarter water 

utilization through 

sophisticated irrigation 

systems. These systems 

meticulously monitor and 

regulate water usage, 

curbing wastage and 

bolstering sustainability in 

grape cultivation. 

In a context where water 

is a precious resource, AI 

enables more efficient 

water use through smart 

irrigation systems. These 

systems monitor and 

control water usage 

precisely, reducing waste 

and increasing 

sustainability in olive tree 

cultivation. 

Improvement in 

Quality:  

AI assumes a critical role in 

assuring wine quality by 

discerning patterns and 

traits that directly influence 

its excellence. This 

meticulous scrutiny 

guarantees the production 

AI also plays a crucial role 

in the quality control of 

olive oil, allowing the 

detection of patterns and 

characteristics that 

directly affect its quality. 

This ensures that only the 
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and marketing of only the 

highest-grade wines. 

highest-quality olive oil is 

produced and marketed. 

Decision Support:  By processing extensive 

datasets, AI offers invaluable 

insights to winemakers, 

aiding in informed decisions 

regarding vineyard 

management, production 

forecasts, and strategic 

market approaches. 

With the ability to analyze 

large volumes of data, AI 

provides valuable insights 

to farmers, helping them 

make informed decisions 

about plantation 

management, production 

forecasts, and market 

strategies. 

 

6.3 Quantitative analysis 

To answer the research question, it was applied a quantitative methodologic approach 

supported by a questionnaire to identify differences between experts, academics, and 

agriculture professionals on AI's impact on the agricultural sector. The information was 

collected via a structured questionnaire that was prepared after the review of the literature. A 

convenience sample was used (non-probabilistic sampling procedure). When it is difficult to 

obtain a complete sampling, convenience sampling is suitable (Mercadé et al., 2017, 2018). 

The fieldwork was carried out between January and February of 2024 with a participation of 

80 individuals, for a confidence level of 95% (and p=q=0.5) and an increase in data error for 

the estimate of the proportion of 5.8%. The next table shows a summary of the information 

regarding the data collection and the technical matters of the sample (Table 4). 

 

Table 4. Fact Sheet 

Fieldwork January through Feebruary 2024 

Sample size 80 surveyed 

Sample type Convenience sampling 

Survey type Structured online questionnaire 

Sampling error 5.8% assuming p=q=0.5 and a confidence level of 

95% 

 

6.4 Data Analyses and Discussion 

To analyze the differences in perceptions between Experts, academics, and Agriculture 

professionals, a covariance analysis (ANCOVA) has been carried out. The variance due to the 

individual differences is estimated from the regression between the dependent variable and 

the covariable. The scores in the dependent variable are statistically adjusted to the covariable. 

Finally, an ANOVA is performed on these adjusted scores (Tabachnick and Fidell, 2007). Thus, 
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the analysis controls the effect of the covariable, so that it eliminates the variation due to the 

mismatch of the ANOVA error. 

In the following table (5) analyzes the adjusted means F statistics and p-value for each 

group. 

Table 5. AI Technologies applied in the Agricultural sector. 

Variables 

Experts and 

Academics 

Agriculture 

professionals F p 

Precision Agriculture 4,112 3,153 102,323 0,000*** 

Monitoring and Disease Detection 3,780 3,526 24,762 0,000*** 

Predictive Analytics 4,211 3,631 15,626 0,000*** 

Robotic Farming 4,354 3,614 67,235 0,000*** 

Supply Chain Optimization 4,366 3,500 88,432 0,000*** 

Crop Breeding and Genomics 4,321 3,571 82,533 0,000*** 

Farm Management Systems 4,234 3,568 55,425 0,000*** 

     

*=p<0,1; **=p<0,05; ***=p<0,01     

 

In Table 5 are displayed the adjusted means, F statistics, and p-values. The analysis shows 

that there are statistically significant differences in all AI technologies applied to Agriculture 

(p-value <0.01 in all cases), always showing a higher score in Experts and Academics 

responses. 

 

As for AI impacts in the agriculture sector, a four-point Likert scale, that rate 1 as “None”, 

2 as “Low”, 3 as “Moderate”, and 4 as “High” impact, was used. The t-student test has been 

carried out to verify whether there are significant differences between Experts, Academics and 

Agriculture professionals (Table 6). 

Table 6: Perceptions about AI impacts in the Agriculture Sector 

Variables 

Experts 

and 

Academics 

Mean 

Agriculture 

Professionals 

Mean t-student p 

Increased Production Efficiency 2,14 1,43 1,930 0,052* 

Precision in Agricultural Management  2,48 1,95 3,743 0,000*** 

Harvest Optimization 2,68 1,71 1,512   0,080* 

Intelligent Water Resource 

Management  2,58 1,40 7,644 0,000*** 

Improvement in Quality  2,05 1,77 1,732 0,03** 

Decision Support 2,25 1,81 4,945 0,001*** 

*=p<0,1; **=p<0,05; ***=p<0,01     
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In table 6 it can be seen that Experts and academics sample have higher scores in all the 

ítems analyzed, namely, the higher impacts are in Harvest optimization, Intelligent Water 

Resource Management, in Precision in Agricultural Management, in Decision Support, and 

Improvement in Quality. 

Finally, to analyze whether there is a correlation between AI and its influence on efficiency 

and Decision Support a Cramer's test was applied (table 7). 

Table 7: AI Impacts on Efficiency and Decision Support 

 Cramer test p 

AI Influences Efficiency in Agriculture 0,373 0.000*** 

AI contributes to effective decision support 0,368 0.00*** 

*=p<0,1; **=p<0,05; ***=p<0,01   

The results indicate that AI has an influence on both the variable's efficiency and decision 

support according to the perceptions of the participants in the study. 

 

7. Recommendations for Public Policies to a potential promotion of AI in 

Agriculture  

Public policies play a crucial role in fostering the integration of Artificial Intelligence in 

agriculture across Portugal. In this context, and emerging from this study, next are presented 

some recommendations that can promote AI adoption in agriculture: 

1. Research and Development Funding: Government funding initiatives aimed at research 

and development in AI technologies specific to agriculture can incentivize innovation. Grants, 

subsidies, and research partnerships can encourage the development of AI tools tailored to 

the needs of farmers, processors, and marketers. 

2. Education and Training Programs: Establishing educational programs and training 

initiatives focused on AI applications in agriculture can enhance the skill set of farmers and 

agricultural professionals. Workshops, courses, and skill development programs can facilitate 

the understanding and effective use of AI tools in farming practices. 

3. Data Infrastructure Support: Building a robust data infrastructure that enables the 

collection, sharing, and analysis of agricultural data is essential. Policies supporting the 

creation of data-sharing platforms and frameworks for standardized data collection can aid in 

the development of AI-driven solutions for agriculture. 

4. Regulatory Frameworks and Standards: Clear regulatory guidelines and standards 

specific to AI applications in agriculture are necessary. These regulations should ensure ethical 

AI use, data privacy, and interoperability of AI systems, fostering trust and confidence in 

adopting AI technologies. 

5. Financial Incentives for Adoption: Providing financial incentives such as tax breaks, 

subsidies, or low-interest loans for farmers and producers adopting AI technologies can 

accelerate their uptake. These incentives can offset initial investment costs and encourage 

broader adoption of AI-driven solutions. 
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6. Collaboration and Knowledge Sharing: Encouraging collaboration between government 

bodies, research institutions, industry stakeholders, and tech innovators can facilitate 

knowledge sharing. Platforms for collaboration, exchange of best practices, and promoting 

partnerships can drive AI innovation in the agricultural sector. 

7. Promotion of Sustainable Practices: Policies promoting the use of AI to improve 

sustainability in agriculture could be incentivized. AI-driven precision agriculture techniques 

can optimize resource utilization, reduce environmental impacts, and align with sustainability 

goals, thereby qualifying for support and recognition. 

8. Support for Market Access: Facilitating market access for AI-enabled products and 

services related to agriculture is crucial. Policies that encourage the use of AI for quality 

assurance, traceability, and branding can enhance market competitiveness and consumer 

trust. 

The process of integrating new practices and technologies within regulatory frameworks 

involves several key phases: policymaking, implementation, and evaluation; and the next 

figure (2) represents how these policy recommendations can be integrated into the public 

policy dimensions. 

 

 

Figure 2 – Public Policy Dimensions 

The policymaking phase involves the development of new policies or the revision of existing 

ones to accommodate advancements in agricultural practices and technologies. Policymakers, 

including government agencies, agricultural experts, and stakeholders, collaborate to identify 

emerging needs, assess available technologies, and formulate regulations/legislations that 

promote innovation in this case in the agriculture sector. 

After the policies are formulated, it is needed to implement them by the agricultural sector, 

providing training and technical assistance, and establishing mechanisms for compliance 
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monitoring and enforcement. Agricultural associations and research institutions facilitate the 

adoption of new practices and technologies. Moreover, incentivizing compliance through 

subsidies, grants, or tax incentives can encourage widespread adoption of AI and 

implementation. 

The dissemination based on the evaluation process involves monitoring key performance 

indicators, such as changes in productivity and new practices and technologies implemented. 

This phase helps policymakers understand the effectiveness of the policies to make necessary 

adjustments to enhance their impact. 

 

8. Conclusion, Limitations, and future research  

AI's integration into agriculture represents a significant opportunity to address the sector's 

challenges while enhancing productivity and sustainability. By leveraging AI technologies such 

as precision agriculture, crop monitoring, predictive analytics, robotic farming, and supply 

chain optimization, farmers can make data-driven decisions, optimize resource use, and 

streamline operations. Furthermore, AI-driven solutions have the potential to reshape 

agricultural business models, fostering innovation and sustainability across the entire value 

chain.  

Despite the promising potential of AI in agriculture as shown by this research, several 

challenges persist. The existing literature often lacks comprehensive real-world case studies 

demonstrating the tangible benefits of AI technologies on farms. Additionally, there is a 

shortage of AI-driven business models tailored to the agricultural sector. Moreover, the 

integration of AI into agriculture requires addressing technical, infrastructural, and regulatory 

challenges. Furthermore, the adoption of AI technologies may face resistance due to concerns 

about data privacy, cybersecurity, and the displacement of traditional farming practices. Finally, 

the scalability and accessibility of AI solutions in agriculture remain a concern, particularly for 

smallholder farmers. 

Regarding the main limitations of this research, there is a sampling bias, because the 

demographic groups are underrepresented, and this limits the generalizability of the findings. 

As this topic is not very well studied there are no adequate scales already validated. The case 

studies can offer a higher in-depth exploration of the application of AI to agriculture, but there 

is little information available and a low number of studies.  

Future research in the field of AI in agriculture should aim to advance the understanding of 

AI's implications for the sector. This includes conducting more comprehensive case studies that 

evaluate the real-world impact of AI technologies on farm productivity, sustainability, and 

profitability. Moreover, there is a need for research focused on developing AI-driven business 

models tailored to the unique needs and challenges of the agricultural sector. Additionally, 

interdisciplinary research collaboration is essential to address technical, infrastructural, and 

regulatory challenges hindering the adoption of AI in agriculture. Furthermore, future studies 

should explore the scalability and accessibility of AI solutions, particularly in the context of 
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smallholder farmers. Overall, continued research in this area is crucial to unlocking the full 

potential of AI in transforming the agriculture sector. 
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