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1. Introduction

Europe's �2020 Strategy� is motivated by the following diagnostics: "Europe's average
growth rate has been structurally lower than that of our main economic partners, largely
due to a productivity gap that has widened over the last decade. Much of this is due to
di�erences in business structures combined with lower levels of investment in R&D and
innovation, insu�cient use of information and communications technologies, reluctance
in some parts of our societies to embrace innovation, barriers to market access and a less
dynamic business environment." (European Commission, 2010, p. 5). The "Strategy"
rests on the conventional view that increases in the shares of high-skilled workers and of
the high-tech sector are major intermediate goals to improve the economic growth rate
of the European Union. One of the �headline targets� states that �the share of early
school leavers should be under 10% and at least 40% of the younger generation (30-34
years old) should have a tertiary degree� by 2020 (European Commission, 2010, p. 3).
Another major target is to reduce the gap over the relative importance of the high-tech
sector as compared with the US (European Commission, 2010, p. 10).
However, anecdotal cross-country evidence for Europe suggests that: �rstly, the elas-

ticity of the per capita GDP growth rate relative to the skill structure is not signi�cantly
di�erent from zero (the elasticity is −0.026, with a s.e. of 0.172; see Appendix A for
details on the data); secondly, the elasticity of the growth rate relative to the technology
structure, measured either as relative production or as the relative number of �rms in the
high- vis-à-vis the low-tech sector is also not signi�cantly di�erent from zero (e.g., the
elasticity for production is −0.003, with a s.e. of 0.118);1 thirdly, there is a signi�cant
positive elasticity of the technology structure with respect to the skill structure (e.g., the
elasticity for production is 0.430, with a s.e. of 0.160); �nally, the technology-skill elas-
ticity is higher when the technology structure is measured by relative production than
when it is measured by the relative number of �rms, implying that relative �rm size also
exhibits a positive elasticity with respect to the skill structure.2

Thus, the conventional view underlying Europe's �2020 Strategy�, based on the premise
that improving the skill structure would induce an increase in the share of the high-tech
sector together with an increase in the economic growth rate, is not fully supported by the
data: indeed only the "right" relationship between the skill structure and the technology

1Henceforth, we will also refer to these variables as �relative production� and �relative number of �rms�.
2The data on the skill structure refers to manufacturing employment, because we want to relate the
skill structure with the (manufacturing) technology structure. However, a similar weak growth-skill
relationship arises if one considers the skill structure measured by total employment. More generally,
the empirical growth literature presents disparate results concerning the strength of the relationship
between human capital and economic growth. The weak relationship found in many cases has been
justi�ed on the grounds of the existence of, e.g., a pervasive mismatch between skills and jobs that
translates into a low impact of human capital on growth at the aggregate level, low education quality
such that increasing years of schooling do not correspond to a larger human capital stock, or errors in
the measurement of human capital, both conceptually and empirically (see, e.g., Backus, Kehoe, and
Kehoe, 1992; Benhabib and Spiegel, 1994; Pritchett, 2001; de la Fuente and Doménech, 2006; Cohen
and Soto, 2007). In contrast, as shown below, our approach focuses on the composition of human
capital (high- versus low-skilled workers) and on explanations featuring the technical characteristics
of the sectors that demand high-skilled labour.
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structure is observed. What can explain that puzzle? Are there any policy instruments
that would allow for all the �right� correlations?
The available literature does not provide an answer if we consider all the three elas-

ticities (and the two variants using the data on production and the number of �rms).
In order to give an answer, we adopt an agnostic approach by extending a benchmark
directed technical change endogenous growth model with a very �exible structure, which
allows us to identify the structural relationships between growth, technology structure
and skill structure underlying those facts for a cross-section of European countries.
We assume that �nal goods can be produced with either one of two alternative technolo-

gies, high-tech or low-tech, which are characterised by using either high- or low-skilled
labour-speci�c intermediate goods. Since the data shows that the high-tech sector is
more intensive in high-skilled labour than the low-tech sector,3 we consider the high-
and low-skilled labour-speci�c intermediate-good sectors in the model as the theoretical
counterpart of the high- and low-tech sectors in the data (e.g., Cozzi and Impullitti,
2010).
The skill structure is assumed to be exogenous, as usual in the literature of directed

technical change, in order to isolate the impact of the observed shifts in the propor-
tion of high-skilled workers across countries through the technological-knowledge bias
mechanism (e.g., Acemoglu and Zilibotti, 2001; Acemoglu, 2003).4

R&D can be directed to either type of intermediate good. Here we introduce several
ingredients allowing for an identi�cation of the key structural relationships. Firstly, we
assume there are two types of R&D, vertical and horizontal R&D, which can be sector
speci�c. Firms can introduce a new high-tech or low-tech speci�c intermediate good
or can improve the quality of the existing high-tech or low-tech intermediate goods.
Secondly, there are several types of �xed and market-complexity R&D costs that are
heterogeneous across sectors and/or R&D types. Thirdly, we assume domestic R&D
can bene�t from international technology linkages, e.g., channeled through foreign direct
investment (FDI) �ows.5

3According to the data for the average of the European Union (27 countries, 2007), 30.9% of the
employment in the high-tech manufacturing sectors is high skilled (�college graduates�), against 12.1%
of the employment in the low-tech sectors (see Appendix A for further details on the data).

4In principle, causality can run both ways: an increase in the share of high-skilled labour may imply
higher economic growth, but also the latter may increase enrollment rates and thereby the share of
the high skilled. However, we only address the �rst type of causation, since it tends to take place
within a shorter time scale (a feature that is particularly relevant given the relatively short time
period covered by our data set). Indeed, some authors emphasise the cross-country relationship
between the share of high-skilled labour and 'exogenous' institutional factors (see, e.g., Jones and
Romer, 2010), and particularly strong evidence on causality from human capital to growth relates to
the importance of fundamental economic institutions using identi�cation through historical factors
(e.g., Acemoglu, Johnson, and Robinson, 2005).

5A modeling strategy that abstracts from international trade and focus on international technology
linkages has been frequently adopted in the growth literature that looks into cross-country data
(e.g., Borensztein, Gregorio, and Lee, 1998; Dinopoulos and Thompson, 2000; Caselli and Coleman,
2006; Vandenbussche, Aghion, and Meghir, 2006; Fadinger and Mayr 2014). In our case, it seems
particularly adequate since we are focusing on a cross-section of European countries, among which
intrasectoral trade predominates and where the latter may be proxied by FDI �ows.
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The model provides measurable relationships between the skill structure and the eco-
nomic growth rate and the technology structure variables along the balanced-growth path
(BGP). We quantify those structural (BGP) relationships by calibrating the model after
the (indirect) estimation of key structural parameters using the available cross-country
European data. We �nd consistency with the empirical relationships between the skill
structure, the technology structure and growth if one allows for the simultaneous exis-
tence of scale e�ects on growth (associated with positive but small market-complexity
costs in vertical R&D) and of high barriers to entry into the high-tech sector vis-à-vis the
low-tech sector (associated with relatively large �xed R&D costs in the high-tech sector).
Thus, by taking a structural approach to the data, we are able to uncover the under-

lying mechanism linking the three sets of variables (growth, technology structure and
skill structure). The weak cross-country elasticities between the growth rate and both
the technology and the skill structure can be a consequence of the fact that large relative
barriers to entry into the high-tech sector reduce the impact of the higher proportion
of the high-skilled labour on a country's growth rate. These large barriers dampen the
e�ect of the share of high-skilled labour on growth because the high-tech sector is the
main employer of high-skilled labour.
Several robustness checks are performed by going through a large number of di�erent

scenarios for the values of the key structural parameters, namely by considering the
extreme bounds of the con�dence intervals of the estimates of the structural parameters
and using either the 1995-2007 average or the initial (1995) value for the skill-structure
regressor (to account for a possible simultaneity bias issue). We also allow relative barriers
to entry to comprise both homogeneous and country-speci�c components. Country-
speci�c barriers do not a�ect our results, suggesting that the homogeneous component
of relative barriers is the most relevant factor explaining the observed cross-country
growth elasticities. As our data set comprises only European countries, this may be a
consequence of the common, supranational, regulatory framework impinged on the EU
production sectors.
Counterfactual policy exercises allows us to quantify the e�ect of a reduction in (ver-

tical) relative barriers to entry on the growth-skill elasticity in our cross-section of Eu-
ropean countries: those barriers must be reduced between 79% and 88% depending on
the scenario considered. In all cases, barriers to entry must become smaller in the high-
than in the low-tech sector. The reduction in relative barriers is e�ective in increasing
the growth-skill elasticity because growth in countries with a larger proportion of high-
skilled workers bene�ts more from that reduction: e.g., considering the countries with
the smallest and the largest proportion of high-skilled labour in our sample, Portugal
and Ireland, the relative increase in the economic growth rate due to a given reduction
in barriers to entry is, in the latter, about four times the relative increase in the former
(if one allows for country-speci�c barriers, the gap increases to over �ve times). A policy
implication suggests itself: education policy (or say measures to clamp down on brain-
drain �ows) and industrial policy aiming to reduce barriers to entry in the high-tech
sector have complementary e�ects on economic growth. However, the e�ectiveness of the
barriers-reducing policy is negatively related to the initial level of those barriers, which
implies that barriers must be brought down to considerable low levels before they start
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producing signi�cant results.
We run a second counterfactual exercise aiming at the determination of the impact on

the European long-run growth rate if the average European entry costs were reduced to
a point such that the share of the European high-tech sector is raised to the US level. A
simultaneous reduction of vertical and horizontal relative barriers by, respectively, 34%
and 61% increases the share of production and of the number of �rms of the high-tech
sector in Europe to about the US level, while it would increase the European economic
growth rate by 0.22 p.p (relative increase of 7.4%). Alternatively, the same goal would
be achieved by increasing the average European skill ratio by 94%, which would induce
an increase of the European growth rate by 0.27 p.p. (relative increase of 8.9%). These
results suggest that, as regards the impact on growth, the policy targeting relative barriers
to entry would be more e�cient than the one targeting relative supply of skills. In both
cases, however, the predicted growth e�ects are modest relative to the size of the policy
action.
The main contribution of this paper to the applied literature on directed technical

change is to relate its insights to the cross-country data on technology structure (rela-
tive production and number of �rms), economic openness and FDI �ows. So far, the
literature has focused on wages and income data (e.g., Acemoglu and Zilibotti, 2001;
Caselli and Coleman, 2006; Gancia, Müller, and Zilibotti, 2011), as well as on unemploy-
ment, migration and environmental data (Fadinger and Mayr, 2014; Acemoglu, Aghion,
Bursztyn, and Hemous, 2012). To further investigate the nature of the structurally es-
timated country-speci�c relative barriers to entry, we also look into the (reduced-form)
relationship between the latter and cross-country data on countrywide regulation costs
and �nancial development (depth) indicators.
The implications of barriers to entry for the aggregate productivity level and growth

have not received much attention in the literature. As regards the empirical literature, re-
cent examples are Nicoletti and Scarpetta (2003) and Aghion, Blundell, Gri�th, Howitt,
and Prantl (2009) on growth, and Barseghyan (2008) on productivity levels. On the the-
oretical front, we single out Poschke (2010), Bento (2014), and Murao and Nirei (2013),
who study the e�ect of entry costs on, respectively, the level and growth of aggregate
productivity. Our paper is closer to Murao and Nirei (2013) in that the authors deal with
entry costs in an endogenous growth setting and focus on their impact on the aggregate
growth rate. Also, both papers seek to structurally estimate the entry cost and conduct
counterfactual experiments to quantify the e�ect of reducing entry barriers. However,
to the best of our knowledge, our paper is the �rst in the growth literature to distin-
guish between high- and low-tech sector entry costs and analyse their interaction with
the economy's skill structure.
Our paper also relates to Vandenbussche, Aghion, and Meghir (2006), as these authors

also focus on the growth e�ects of the share of high-skilled labour in the economy. By
means of an endogenous growth model of imitation and innovation under full scale e�ects,
they show that the closer a country is to the technological frontier, the larger the impact
of high-skilled labour on growth. They then test this prediction for a panel data set
covering 19 OECD countries. We add to this strand of the literature by exploring the
role of di�erential barriers to entry as regards the impact of high-skilled labour on growth,
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under directed technical change (innovation) and �exible scale e�ects.
The above empirical data could in principle be compatible with alternative theoret-

ical explanations relating the skill structure to the technology structure. An apparent
candidate would be the neoclassic Heckscher-Ohlinian approach. However, this relies on
factor endowment abstracting from technological di�erences to explain intersectoral in-
ternational trade, whereas the data highlights the relationship between factor endowment
and technological di�erences among countries with relatively similar levels of technolog-
ical development and, thus, among which intrasectoral trade dominates. Moreover, the
Heckscher-Ohlinian approach cannot explain per se the di�erential behaviour between
relative production and the relative number of �rms vis-à-vis the skill structure, an also
relevant feature of the data, whereas endogenous growth e�ects are typically absent in
this framework. Therefore, we consider a directed technical change approach, which
allows us to endogenously relate the skill structure to both measures of the technol-
ogy structure and to economic growth in a natural and uni�ed way, and to explore the
connection between international technology linkages and intrasectoral trade.
The remainder of the paper has the following structure. In Section 2, we present

the model of directed technological change with vertical and horizontal R&D and scale
e�ects, derive the general equilibrium and the BGP. Section 3 details the comparative
statics results, deriving predictions with respect to the BGP relationships between the
skill structure, the technology structure and economic growth. In Sections 4 and 5, we
calibrate the model using the data on the skill structure and the technology structure,
and quantify the key growth relationships of the model. Section 6 gives some concluding
remarks.

2. The model

Two di�erent types of labour, high and low skilled, and factor-biased technical change
are introduced in a dynamic general-equilibrium setup, as in Acemoglu and Zilibotti
(2001). Moreover, the setup is augmented with vertical R&D, international technology
linkages, and �exible scale e�ects. We consider that the world consists of many countries
that have the same production structure and preferences but may di�er as regards skill
endowments. Countries are connected via technology linkages (channeled through, e.g.,
FDI or licensing), but we abstract from international trade and labour mobility. These
two features would substantially complicate the model without adding much to our spe-
ci�c mechanism. Furthermore, empirically, the cross-border �ows of labour are relatively
small between European countries, while FDI �ows may proxy for intrasectoral interna-
tional trade, the predominant form of trade between these countries. Indeed, one can
interpret FDI taking place between countries with roughly the same level of technological
development as a reduced form of a mechanism of intrasectoral international trade.6

In each country, the economy is populated by a �xed number of in�nitely-lived house-
holds who inelastically supply one of two types of labour to �rms: low-skilled, L, and

6This is in contrast to the classic (Ricardian) and neoclassic (Heckscher-Ohlinian) intersectorial inter-
national trade approaches.
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high-skilled labour, H. There is a competitive sector producing a �nal good that can
be used in consumption, production of intermediate goods and R&D. The �nal good is
produced by a continuum of �rms, indexed by n ∈ [0, 1], to which two substitute tech-
nologies are available, low-tech or high-tech (or L- or H-technology), characterised by
using, respectively, low- or high-skilled labour and a continuum of labour-speci�c inter-
mediate goods, indexed by ωL ∈ [0, NL] or ωH ∈ [0, NH ]. Thus, the intermediate goods
are supplied by two sectors, both having a large number of �rms operating in a mo-
nopolistic competitive framework where entry is the result of successful R&D. Potential
entrants can devote resources to either horizontal or vertical R&D, and directed to either
one of the two types of labour-speci�c intermediate goods. Horizontal R&D increases
the number of industries, Nm, m ∈ {L,H}, in the m-speci�c intermediate-good sector,7

while vertical R&D increases the quality level of the good of an existing industry, indexed
by jm(ωm). Then, the quality level jm(ωm) translates into productivity of the �nal pro-
ducer from using the good produced by industry ωm, λ

jm(ωm), where λ > 1 measures the
size of each quality upgrade. By improving on the current best quality jm, a successful
R&D �rm will introduce the leading-edge quality jm(ωm) + 1 and thus render ine�cient
the existing input. Both vertical and horizontal R&D activities are subject to �exible
scale e�ects.

2.1. Production and price decisions

The aggregate output at time t is de�ned as Ytot(t) =
´ 1

0 P (n, t)Y (n, t)dn, where P (n, t)
and Y (n, t) are the relative price and the quantity of the �nal good produced by �rm
n. Every �rm n has a constant-returns-to-scale technology and uses, ex-ante, low- and
high-skilled labour and a continuum of labour-speci�c intermediate goods with measure
Nm(t), m ∈ {L,H}

Y (n, t) = A

{ˆ NL(t)

0
((1− n) · l · L(n))α

(
λjL(ωL,t) ·XL(n, ωL, t)

)1−α
dωL +

+

ˆ NH(t)

0
(n · h ·H(n))α

(
λjH(ωH ,t) ·XH(n, ωH , t)

)1−α
dωH

}
(1)

where l · L(n) and h · H(n) are the e�ciency-adjusted labour inputs, with h > l ≥ 1
capturing the absolute-productivity advantage of H over L, and λjm(ωm,t) ·Xm(n, ωm, t)
is the e�ciency-adjusted input of m-speci�c intermediate good ωm, used by �rm n at
time t.8 The parameters A > 0 and α ∈ (0, 1) denote the total factor productivity and
the labour share in production. The indexing of �rms assigns a larger (smaller) n to �rms
holding a relative productivity advantage of using the H (L)-technology. For every t,
there is an endogenous threshold n̄(t), at which a switch from one technology to the other
becomes advantageous, so that every �rm n produces exclusively with either the L- or the
H-technology. The threshold n̄(t) follows from market clearing in the inputs markets,

7Henceforth, we will also refer to the �m-speci�c intermediate-good sector� as �m-technology sector�.
8In equilibrium, only the top quality of each ωm is produced and used.
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such that n̄(t) =
[
1 + (h/l ·H/L ·QH(t)/QL(t))1/2

]−1
, where L =

´ n̄
0 L(n)dn, H =´ 1

n̄ H(n)dn, and

Qm(t) =

ˆ Nm(t)

0
qm(ωm, t)dωm, qm(ωm, t) ≡ λjm(ωm,t)( 1−α

α ), m ∈ {L,H} , (2)

is the aggregate quality index in the m-technology sector. Final producers take the
price of their �nal good, P (n, t), wages, Wm(t), and input prices pm(ωm, t) as given.
From the usual pro�t maximisation conditions, we determine the demand of L-speci�c
(H-speci�c) intermediate good ωm by �rm n ∈ [0, n̄(t)] (�rm n ∈ [n̄(t), 1]). Also, it
is convenient to de�ne the price indices of �nal goods PL(t) and PH(t), which can be
shown to relate with P (n, t) and n̄(t), PL(t) = P (n, t) · (1− n)α = exp(−α) · n̄(t)−α and
PH(t) = P (n, t) · nα = exp(−α) · (1− n̄(t))−α.
The intermediate-good m-technology sector contains of a continuum Nm(t) of indus-

tries. There is monopolistic competition if we consider the whole sector: the monopolist
in industry ωm ∈ [0, Nm(t)] �xes the price pm(ωm, t) in face of an isoelastic demand

curve, XL(ωL, t) =
´ n̄(t)

0 XL(n, ωL, t)dn or XH(ωH , t) =
´ 1
n̄(t)XH(n, ωH , t)dn. Interme-

diate goods are non-durable and entail a unit marginal cost of production in terms of the
�nal good. Pro�t in ωm is thus πm(ωm, t) = (pm(ωm, t)− 1) ·Xm(ωm, t), and the pro�t
maximising price is a constant markup over marginal cost pm(ωm, t) ≡ p = 1/(1−α) > 1.
From the markup, we �nd the optimal intermediate-good production, Xm(ωm) and, thus,

the optimal pro�t accrued by the monopolist in ωm, πL(ωL, t) = π0 ·l ·L·PL(t)
1
α ·qL(ωL, t)

or πH(ωH , t) = π0 · h · H · PH(t)
1
α · qH(ωH , t), where π0 ≡ A

1
α (1− α)

2
α α/(1 − α) is a

positive constant.
Aggregate productions of intermediate and �nal goods are, respectively

Xtot(t) = A
1
α · (1− α)

2
α ·
(
PL(t)

1
α · l · L ·QL(t) + PH(t)

1
α · h ·H ·QH(t)

)
(3)

and

Ytot(t) = A
1
α · (1− α)

2(1−α)
α ·

(
PL(t)

1
α · l · L ·QL(t) + PH(t)

1
α · h ·H ·QH(t)

)
. (4)

where Xtot(t) ≡ XL(t) + XH(t) ≡
´ NL(t)

0 XL(ωL, t)dωL +
´ NH(t)

0 XH(ωH , t)dωH and

Ytot(t) ≡ YL(t) + YH(t) ≡
´ n̄(t)

0 P (n, t)Y (n, t)dn+
´ 1
n̄(t) P (n, t)Y (n, t)dn.

2.2. R&D

There are two types of R&D, one targeting vertical innovation and the other targeting
horizontal innovation. Each new design (a new variety or a higher quality good) is granted
a patent, and successful R&D leads to the set-up of a new �rm in either an existing or
in a new industry (as in, e.g., Howitt, 1999; Strulik, 2007; Gil, Brito, and Afonso, 2013).
There is perfect competition among entrants and free entry into R&D activities. We
model the latter by considering R&D costs as a positive function of complexity e�ects
and of a �ow �xed component (which later will be interpreted as a measure of barriers
to entry), and a negative function of international technology linkages.
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Vertical R&D A successful innovation will instantaneously increase the quality index in
industry ωm from qm(ωm, t) = qm(jm) to qm(jm+1) = λ(1−α)/αqm(ωm, t),m ∈ {L,H}. In
equilibrium, the producer of the intermediate good ωm of lower quality is priced out of
business. Let Iim (jm) denote the Poisson arrival rate of vertical innovations by potential
entrant i in industry ωm, at a cost of Φm(jm) units of the �nal good, when the highest
quality existing is jm. The rate I

i
m (jm) is independently distributed across �rms, across

industries and over time, and depends on the �ow of resources Riv,m (jm) committed by
entrants at time t. Aggregating across �rms i in ωm, we get Rv,m (jm) =

∑
iR

i
v,m (jm)

and Im (jm) =
∑

i I
i
m (jm), and thus

Im (jm) = Rv,m (jm) · 1

Φm(jm)
, m ∈ {L,H} . (5)

where Φm (jm) = ζm · mε · qm(jm + 1)/Fv,m, with ζm > 0 and ε ∈ R. Equation (5)
incorporates four types of e�ects. Firstly, there is an R&D complexity e�ect such that
the larger the (next) quality level in an industry of sector m, qm(jm + 1), the costlier
it is to introduce a further jump in quality (e.g.,Howitt, 1999; Barro and Sala-i-Martin,
2004, ch. 7).9 Secondly, there is a (potential) market complexity e�ect, measured by
mε: an increase in the market scale of the m-technology sector, measured by labour
m, may imply say increasing coordination, organisational and transportation costs and
thereby dilute the e�ect of R&D outlays on the innovation probability. The dilution
e�ect generated by those costs can partially (0 < ε < 1) or totally (ε = 1) eliminate, or
revert (ε > 1) the market scale bene�ts on pro�ts, which accrue to the R&D successful
�rm. On the other hand, if ε < 0, market scale reduces those costs and thus adds to the
direct scale bene�ts on pro�ts. The usual knife-edge assumption is that either ε = 0 or
ε = 1 (see, e.g., Barro and Sala-i-Martin, 2004, ch. 7). Thus, as shown later, there may
be positive, null or negative net scale e�ects on industrial growth, as measured by 1− ε.
Thirdly, the cost of vertical R&D also depends on a �xed �ow cost speci�c to the m-
complementary production technology targeted by vertical R&D, ζm. Then, ζ ≡ ζH/ζL
may be interpreted as a measure of relative barriers to entry through vertical innovation
into the H-technology sector. Finally, we allow for a positive e�ect of international
technology linkages on R&D performance, denoted by Fv,m (this will be speci�ed in
Section 4.1, below).10

Under free-entry, one can derive the no-arbitrage conditions facing a vertical innovator,

9As usual in the literature, the fact that Φm depends linearly on qm implies that the increasing di�culty
of creating new product generations over t exactly o�sets the increased rewards from marketing higher
quality products. This allows for constant vertical-innovation rate over t and across ωm olong the
BGP.

10We do not consider technology catching-up e�ects of the traditional form, i.e., that technology is
adopted and that the adoption cost is decreasing in the gap to the technology frontier (e.g., Nel-
son and Phelps, 1966). The assumption that countries do not invent technologies independently
but rather adopt them from a technology frontier is especially plausible for developing countries,
whereas international technology spillovers as enhancers of domestically-produced knowledge seem
to be important also for industrialised countries (e.g., Coe and Helpman, 1995; Coe, Helpman, and
Ho�maister, 2009; Ang and Madsen, 2015). However, we do consider a multiplicative interaction
between the �ow �xed costs and the technology-knowledge stock (measured by quality level or num-
ber of varieties), which implies that the smaller the latter (and, hence, the larger the gap to the

10



r (t) + IL(t) =
π0 · l · L1−ε · PL(t)

1
α

ζL/Fv,L
, r (t) + IH(t) =

π0 · h ·H1−ε · PH(t)
1
α

ζH/Fv,H
, (6)

where r is the real interest rate. The above imply that the rates of entry are symmetric
across industries, Im(ωm, t) = Im(t).
Equating the e�ective rate of return for both sectors, in (6), another no-arbitrage

condition obtains

IH(t)− IL(t) = π0

(
h

ζH/Fv,H
·H1−ε · PH(t)

1
α − l

ζL/Fv,L
L1−ε · PL(t)

1
α

)
. (7)

Solving equation (5) for Rv,m(ωm, t) = Rv,m(jm) and aggregating across industries

ωm, we get total resources devoted to vertical R&D, Rv,m(t) = ζm ·mε · λ
1−α
α · Im(t) ·

Qm(t)/Fv,m, m ∈ {L,H} .

Horizontal R&D Variety expansion emerges from R&D aimed at creating new inter-
mediate goods. Let Ṅ e

m(t) denote the contribution to the instantaneous �ow of new
m-speci�c intermediate goods by potential entrant e, ηm(t) the R&D cost in units of the
�nal good and Rehm(t) the �ow of resources devoted to horizontal R&D by e at time t.
Then, aggregating across �rms e, we get Rh,m(t) =

∑
eR

e
h,m(t) and Ṅm(t) =

∑
e Ṅ

e
m(t),

implying

Ṅm(t) = Rh,m(t)
1

ηm(t)
, m ∈ {L,H} , (8)

where ηm(t) = φm·mδ ·Nm(t)σ/Fh,m, with φm > 0, δ ∈ R, and σ > 0. Similarly to vertical
R&D, equation (8) also incorporates four types of e�ects. Firstly, an R&D complexity
e�ect arises through the dependence of ηm on Nm. That is, the larger the number of
existing varieties, the costlier it is to introduce new varieties (e.g., Evans, Honkapohja,
and Romer, 1998; Barro and Sala-i-Martin, 2004, ch. 6). Secondly, (8) also implies that
an increase in market scale, measured by L or H, may (potentially) dilute the e�ect of
R&D outlays on the innovation rate (market complexity e�ect). Again, this may re�ect
coordination, organisational and transportation costs related to market size, which may
partially (0 < δ < 1), totally (δ = 1) or more than (δ > 1) o�set the scale bene�ts on
pro�ts. However, one may also have δ < 0, in which case market scale reduces those costs
and thus adds to the scale bene�ts on pro�ts. This contrasts with the usual knife-edge
assumption that either δ = 0 or δ = 1 (see, e.g., Barro and Sala-i-Martin, 2004, ch. 6),
and, as made clear in Section 4 below, enables identi�cation in our estimation exercise.
Thirdly, for any given supply of labour and number of varieties, the cost of horizontal
R&D also depends on a �xed �ow cost, φm, which can be speci�c to the type of production
technology that is targeted by horizontal R&D, φH and φL. In particular, φ ≡ φH/φL can

technology frontier), the smaller the impact of a given amount of �ow �xed costs on R&D total
costs.
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be interpreted as a measure of relative barriers to entry through horizontal innovation into
the H-technology sector. Finally, we consider a positive e�ect of international technology
linkages on R&D performance, denoted by Fh,m (this will be speci�ed in Section 4.1,
below).
Each horizontal innovation results in a new intermediate good whose quality level is

drawn randomly from the distribution of existing varieties (e.g., Howitt, 1999). Thus, the

expected quality level of the horizontal innovator is q̄m(t) =
´ Nm(t)

0 qm(ωm, t)dωm/Nm(t) =
Qm(t)/Nm(t). Under free-entry, we can derive the no-arbitrage condition facing a hori-
zontal innovator

r (t) + Im(t) =
π̄m(t)

ηm (t)
, m ∈ {L,H} , (9)

where π̄L = π0 · l · L · P
1
α
L · q̄L and π̄H = π0 · h ·H · P

1
α
H · q̄H .

We get total resources devoted to horizontal R&D by solving (8) with respect to Rh,m.

Intra-sector no-arbitrage condition No-arbitrage in the capital market requires that
the two types of investment, vertical and horizontal R&D, yield equal rates of return,
otherwise one type of investment dominates the other and a corner solution obtains.
Thus, if we equate the e�ective rate of return r + Im for both types of entry, from (6)
and (9), we get the intra-sector no-arbitrage conditions

q̄m(t) =
Qm(t)

Nm(t)
=

ηm(t)

ζm ·mε/Fv,m
=
φm
ζm

Fv,m
Fh,m

·mδ−ε ·Nm(t)σ , m ∈ {L,H} (10)

These no-arbitrage conditions, within the H- and L-technology R&D sectors, equate the
average cost of horizontal R&D, ηm, to the average cost of vertical R&D, q̄m ·ζm ·mε/Fv,m.

2.3. General equilibrium

The economy is populated by a �xed number of in�nitely-lived households who consume
and collect income from investments in �nancial assets (equity) and from labour. Workers
have heterogeneous human capital endowments so that the economy is endowed with H
highly educated (�high-skilled�) and L less educated (�low-skilled�) units of labour given
exogenously and constant over time. Households have perfect foresight concerning the
technological change over time and choose the path of �nal-good aggregate consumption
(C(t))t≥0 to maximise discounted lifetime utility

U =

ˆ ∞
0

(
C(t)1−θ − 1

1− θ

)
e−ρtdt, (11)

where ρ > 0 is the subjective discount rate and θ > 0 is the inverse of the intertemporal
elasticity of substitution. Maximisation of (11) is subject to the �ow budget constraint
ȧ(t) = r(t) · a(t) + WL(t) · L + WH(t) · H − C(t), where a denotes households' real
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�nancial assets holdings, with a given initial level a(0). The transversality condition is
lim
t→∞

e−ρt · C(t)−θ · a(t) = 0, while the Euler equation for consumption is

Ċ(t)

C(t)
=

1

θ
· (r(t)− ρ) . (12)

The aggregate �nancial wealth held by households is composed of equity of interme-

diate good producers a(t) = aL(t) + aH(t), where am(t) =
´ Nm(t)

0 Vm(ωm, t)dωm, m ∈
{L,H}. From the no-arbitrage condition between vertical and horizontal entry, and tak-
ing time derivatives, we �nd the aggregate �ow budget constraint is equivalent to the �nal
product market equilibrium condition, Ytot(t) = Xtot(t) + C(t) + Rh(t) + Rv(t), where
Rh(t) = Rh,L(t) + Rh,H(t) and Rv(t) = Rv,L(t) + Rv,H(t) are the aggregate horizontal
and vertical R&D expenditures, respectively.
The dynamic general equilibrium is de�ned by the paths of allocations and price dis-

tributions ({Xm(ωm, t), pm(ωm, t)} , ωm ∈ [0, Nm(t)])t≥0 and aggregate number of �rms,
quality indices and vertical-innovation rates ({ Nm(t), Qm(t), Im(t)} )t≥0 for sectorsm ∈
{L,H}, and by the aggregate paths (C(t), r(t))t≥0, such that: (i) consumers, �nal-good
�rms and intermediate-good �rms solve their problems; (ii) free-entry and no-arbitrage
conditions are met; and (iii) markets clear. Total supplies of high- and low-skilled labour
are exogenous.

2.4. The balanced-growth path

A general-equilibrium balanced growth path (BGP) exists only if the following conditions
hold among the asymptotic constant growth rates: (i) the growth rates for consumption
and for the quality indices are equal to the endogenous growth rate for the economy g,
gC = gQL = gQH = g; (ii) the growth rates for the number of varieties are equal, gNL =
gNH ; (iii) the vertical-innovation rates and the �nal-good price indices are asymptotically
trendless, gIL = gIH = gPL = gPH = 0; and (iv) the growth rates for the quality indices
and for the number of varieties are monotonously related as gQL/gNL = gQH/gNH = 1+σ.
Then gNL = gNH = g/(1 + σ).
Necessary conditions (i) and (ii) imply that the trendless levels for the vertical-innovation

rates verify IL = IH = I, along the BGP. Introducing this in equation (7), we de-
rive an expression for PH/PL. Then, considering the threshold n̄, we get the long-run
technological-knowledge bias, Q ≡ QH/QL, as (henceforth a tilde over a symbol denotes
BGP magnitudes)

Q̃ =
h

l
·
(
ζH
ζL

)−2

·
(
H

L

)1−2ε

·
(
Fv,H
Fv,L

)2

. (13)

Assuming that the number of industries, N , is large enough to treatQ as time-di�erentiable

and non-stochastic, we time-di�erentiate (2) to get Q̇m(t) =
´ Nm(t)

0 q̇(ω, t)dω+q(N, t)Ṅ(t),
which is well-de�ned if σ > 0. After some algebraic manipulation of the latter, we can
write, for the case in which Im > 0, another asymptotic relationship between the long-run
growth rate of the quality indices and of the number of varieties, gQm = ΞIm + gNm m ∈
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{L,H}, where Ξ ≡
(
λ

1−α
α − 1

)
denotes the quality shift. Then we get g = ΞI+g/(1+σ),

from the above conditions (i) and (iv). Euler equation (12), together with the necessary
condition (i), leads to the familiar relationship between the long-run real interest rate
and the endogenous growth rate, r = ρ+ θg. The transversality condition holds if g > 0.
The non-arbitrage condition for vertical R&D allows us to get the endogenous long-run
economic growth rate

g̃ =
r̃ − ρ
θ

(
1− 1

1 + θµ

)
, (14)

where the long-run real interest rate is constant,

r̃ =
π0

e

(
l

ζL/Fv,L
L1−ε +

h

ζH/Fv,H
H1−ε

)
(15)

with µ ≡ Ξ(1 + σ)/σ > 0 and π0 ≡ A
1
α (1− α)

2
α α/(1 − α). The other steady-state

values are homogeneous across the H and L-technology sectors and are monotonically
related to the long-run economic growth rate, g̃: the long-run vertical-innovation rates
are ĨL = ĨH = Ĩ = g̃/µ ≥ 0, the long-run growth rates for the quality indices are
g̃QL = g̃QH = g̃ > 0 and for the varieties are g̃NL = g̃NH = g̃/(1 + σ) > 0.
Thus, equation (14) shows that the long-run economic growth rate is positive and

generically displays scale e�ects. These e�ects can be positive, null or negative if the
market complexity cost parameter associated to vertical R&D, ε, is smaller, equal or
larger than unity. These costs have a negative e�ect on growth per se. In addition, our
model predicts that gQm exceed gNm if the probability of introducing successful vertical
innovations, Im, is positive, because gQm = ΞIm + gNm , the di�erence being equal to the
expected value of the shift in the intermediate-good quality. Thus, the economic growth
rate is consistent with the well-known view that industrial growth proceeds both along
an intensive and an extensive margin.
However, given the distinct nature of vertical and horizontal innovation (immaterial

versus physical) and the consequent asymmetry in terms of R&D complexity costs (see
(5) and (8)),11 vertical R&D is the ultimate growth engine, whereas variety expansion
is sustained by the endogenous quality upgrade: the expected growth of intermediate-
good quality due to vertical R&D makes it attractive, in terms of intertemporal pro�ts,
for potential entrants to always bear an horizontal R&D complexity cost, in spite of its
more than proportional increase with Nm. Thus, there is a negative relationship between
the economic growth rate and both the horizontal R&D complexity cost parameter, σ,
and the �ow �xed costs to vertical R&D, ζH and ζL, while there is no impact from the
�ow �xed cost to horizontal R&D, φH and φL, and from the market complexity cost
associated to horizontal R&D, δ.

11By comparing these two equations, we see that the elasticity of qm with respect to Im is −1, whereas
the elasticity of Nm with respect to Ṅm/Nm is −(1 + σ), σ > 0.
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3. Growth, technology structure and the skill structure

3.1. Growth and skill structure

The long-run economic growth rate, in equation (14), is a function of the economy's
endowments of both high- and low-skilled labour, H and L, and, by consequence, it is
also a function of the relative supply of skills.
From equations (14) and (15), we �nd that the elasticity of the growth rate regarding

H/L (i.e., the growth-skill elasticity) is

E g̃H/L = E g̃H/L(ε, ζ) ≡ ∂g̃

∂(H/L)

H/L

g̃
= (1− ε)

(
h/l · (H/L)1−ε

ζ/Fv + h/l · (H/L)1−ε

)
, (16)

with Fv ≡ Fv,H/Fv,L and ζ ≡ ζH/ζL, which parametrise, respectively, the interna-
tional technology linkages and the barriers to vertical entry in the H- relative to the
L-technology sector (see (5)). The growth-skill elasticity is positive if 1 − ε > 0, nega-
tively related if 1 − ε < 0 and there is no e�ect in the knife-edge case of 1 − ε = 0. We
also establish that the relative barriers to entry ζ have a negative impact on the degree
of the growth-skill elasticity, while there is a positive impact of the absolute productivity
advantage of the high-skilled, h/l.
For the sake of clarity, we state these results formally:

Proposition 1. Growth and skill structure. The long-run economic growth rate, g̃, re-
sponse to increases in the skill structure, H/L, has the same sign as the scale e�ect
coe�cient 1− ε. It is possible to have both E g̃H/L ≈ 0 and positive net scale e�ects,
1− ε > 0, if the relative barriers to vertical entry, ζ, are high.

[Figure 1 goes about here]

The function E g̃H/L(ε, ζ) = Ē g̃H/L, for Ē
g̃
H/L close to zero, is hump-shaped. For a given

Ē g̃H/L, ζ reaches a maximum at a point such that 1− ε > Ē g̃H/L. Figure 1 illustrates this

result by depicting two cases, Ē g̃H/L = 0.025 and Ē g̃H/L = 0.15, considering the average

values of h/l and H/L from our cross-section sample.
The hump-shape of the function of the growth-skill elasticity implies that, for an

admissible value of the parameter ζ, there are two values of the parameter ε consistent
with a given growth-skill elasticity. On the other hand, although the hump-shape of
the curve is generic, its exact location is very sensitive to the value of the growth-skill
elasticity. For both these reasons, we next estimate the parameters ε and ζ by using
the BGP technology structure equations. Then, we take these estimates to calibrate our
model and compare the elasticities computed with the simulated and the observed data.

3.2. Technology structure and skill structure

The technology structure is described, in the long-run, by the technological-knowledge
bias, Q̃, the relative intermediate-good production, X̃, and the relative number of �rms
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Figure 1: Curves E g̃H/L(ε, ζ) = 0.025 and E g̃H/L(ε, ζ) = 0.15 for h/l = 1.3 and H/L =

0.182.

Ñ (i.e., production and the number of �rms in H- vis-à-vis L-technology sector). The
technological bias has already been presented in equation (13). From XL and XH , in
equation (3), we get the relative intermediate-good production

X̃ ≡
˜(
XH

XL

)
=
h

l
· ζ−1 ·

(
H

L

)1−ε
· Fv, (17)

and, from NL and NH in equation (10), combined with (13), we get the relative number
of �rms

Ñ ≡
˜(
NH

NL

)
= Z0 ·

(
H

L

)D0

· F
1

σ+1

h · F
1

σ+1
v , (18)

where

D0 ≡ 1− ε− δ
1 + σ

(19)

Z0 ≡
(
h

l

) 1
σ+1

· φ
−1
σ+1 · ζ

−1
σ+1 , (20)

with Fh ≡ Fh,H/Fh,L and φ ≡ φH/φL. Therefore, in addition to being a function of
H/L (which sign depends crucially on the complexity-costs parameters ε and δ), the
technology structure also depends on the relative productivity of high-skilled workers,
h/l, on the relative barriers to entry into the H-technology sector, ζ and φ, and on the
relative e�ect of international technological linkages, Fh and Fv.
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As the data on production by the national statistics o�ces (see, e.g., Eurostat, 2001) is
available in quality-adjusted base, we need to adjust the expressions for X̃ and Q̃ accord-
ingly. If we reiterate the steps as in Section 2.1, we �nd total intermediate-good quality-
adjusted production to be (e.g., with m = L) XL =

´ NL
0

´ n̄
0 λjL(ωL) ·XL(n, ωL)dndωL =

A
1
α (1− α)

2
α P

1
α
L lLQL, where QL =

´ NL
0 λjL(ωL) 1

αdωL, and Xtot = XL + XH . We cannot
�nd an explicit algebraic expression for the BGP value of Qm. However, as shown in Ap-

pendix C, we can build an adequate proxy for Qm, Q̂m = Q
1

1−α
m ·N

−( α
1−α)

m m ∈ {L,H},
and de�ne X̂m = Xm · (Qm/Nm)

α
1−α for Xm. Thus, bearing in mind (13), (17) and (18),

we use, for conducting the empirical study, the following quality-adjusted measure of
relative production,

˜̂
X = X̃ ·

˜(Q
N

) α
1−α

= Z1 ·
(
H

L

)D1

· F
−α

(σ+1)(1−α)
h · F [1+( 2σ+1

σ+1 )( α
1−α)]

v , (21)

where

D1 ≡ αδ + 1− α+ σ − ε [1 + (1 + α)σ]

(1 + σ) (1− α)
(22)

Z1 ≡
(
h

l

)[1+( σ
σ+1)( α

1−α)]
· φ

α
(σ+1)(1−α) · ζ−[1+( 2σ+1

σ+1 )( α
1−α)] (23)

Moreover, given X̂m = Xm ·(Qm/Nm)
α

1−α , the quality-adjusted long-run economic growth
rate is monotonously related to non-adjusted growth rate

G̃ =

(
1 +

ασ

(1− α)(1 + σ)

)
· g̃. (24)

In addition to its impact on the BGP economic growth rate (see (14)), the market
complexity cost parameter associated to vertical R&D, ε, plays an important role in
the determination of the sign of the relationship between the skill structure and the
technology-structure variables. The cross-country evidence shows a signi�cantly positive
elasticity of relative production and the relative number of �rms with respect to the skill
structure (see Appendix A), which corresponds to the case of D0 > 0 and D1 > 0.
We can prove that there are two critical values for ε, ε̄0 and ε̄1, such that D0(ε) ≥ 0

and D1(ε) ≥ 0, if and only if ε < min{ε̄0, ε̄1}, where ε̄0 = 1−δ and ε̄1 = 1−α+σ+αδ
1+(1+α)σ . There

is a non-empty set of values for the market complexity-cost parameters (ε, δ) which are
consistent with the cross-country evidence, as shown in Figure 2, where the values for ε
and δ in the positive outhant are highlighted.

[Figure 2 goes about here]

Additionally, the empirical evidence also suggests that the elasticity of the relative
number of �rms is smaller than the elasticity of relative production, which corresponds
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Figure 2: Set of values for the market complexity-cost parameters (ε, δ) that are qualita-
tively consistent with the technology-structure elasticities found in the cross-
country data (see Appendix A), i.e., that imply D0, D1 > 0 in (19) and (22).
Example with α = 0.6 and σ = 0.5.

toD0 < D1. This will be satis�ed if ε < ε̄2 = σ+δ
α+(1+α)σ , and implies a positive relationship

also between relative �rm size and skill structure.
The next proposition summarises the cross-country relationship between the skill struc-

ture and the technology structure, which depends upon the market complexity cost pa-
rameter ε.12

Proposition 2. Technology structure and skill structure Let δ < α/(1 + α) such that
ε̄2 < ε̄1 < ε̄0 for σ �nite. If a country has a higher proportion of high-skilled labour,
H/L, then it will have:

(i) A larger relative number of �rms, production and �rm size, if 0 ≤ ε < ε̄2;

(ii) A larger relative number of �rms and production but a smaller relative �rm size, if
ε̄2 < ε < ε̄1;

(iii) A larger relative number of �rms but a smaller relative production and �rm size, if
ε̄1 < ε < ε̄0;

(iv) A smaller relative number of �rms, production and �rm size, if ε > ε̄0.

The results above derive from the di�erent responses of the relative number of �rms, N ,
and relative production, X̂, through the technological-knowledge bias channel, to shifts
in the relative supply of skills, H/L.

12Henceforth, the ~ is omitted for the sake of simplicity.
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This is explained by the asymmetric impact of both market and R&D complexity
costs on the elasticity of those technology-structure variables with respect to H/L. The
market complexity costs related to horizontal R&D, summarised by δ, have a direct
negative impact on horizontal R&D and an indirect positive impact on vertical R&D
(substitution e�ect). Consequently, there is a negative e�ect on horizontal entry and
hence on the elasticity of N (∂D0/∂δ < 0, in (18)), whereas, through the positive impact
on the quality index, q(j), and thereby on the technological-knowledge bias, Q, there is
also a positive e�ect on the elasticity of X̂ (∂D1/∂δ > 0, in (21). The market complexity
costs related to vertical R&D, summarised by ε, have a direct negative impact on vertical
R&D (and hence ∂D1/∂ε < 0), but also have a negative impact, although smaller in
modulus, on horizontal R&D (∂D0/∂ε < 0, with |∂D0/∂ε| < |∂D1/∂ε|). This re�ects the
fact that the vertical-innovation mechanism ultimately commands the horizontal entry
dynamics, meaning that a BGP with increasingly costly horizontal R&D occurs only
because entrants expect the incumbency value to grow propelled by quality-enhancing
R&D, hence generating a roundabout cost e�ect associated to ε. The asymmetric impact
of the market complexity costs on the behaviour of the technological-structure variables
can be seen by noticing that X̂ is constant when ε = ε̄1 and N is constant when ε = ε̄0,
where ε̄1 < ε̄0.
Furthermore, the e�ect of H/L on N is dampened by the horizontal R&D complexity

cost, summarised by σ (i.e., ∂D0/∂σ < 0), whereas this cost has an indirect positive
impact (substitution e�ect) on X̂ (i.e., ∂D1/∂σ > 0).

4. Quanti�cation

As reported in Section 1, there is a weak empirical relationship between the economic
growth rate and both the skill structure and the technology structure but a signi�cant
positive relationship between the technology structure and the skill structure. As regards
our theoretical model, the relationship between the market complexity cost parameter ε
(where 1 − ε measures net scale e�ects on growth) and the barriers to entry parameter
ζ that is consistent with low growth elasticities is non-linear (see equation (16) and
Figure 1). Thus, in order to quantify the structural parameters ε and ζ, we use the
cross-country data for the technology structure and the skill structure and obtain the
respective (indirect) empirical estimates. In particular, we take their con�dence intervals
as the range of empirically admissible values for ε and ζ in light of the available data
(Section 4.1). Then, we use these values to compute the predicted value of each country's
economic growth rate and relative production. Using these simulated data, we estimate
the cross-country elasticity of economic growth regarding both the skill structure and
relative production and compare them with the estimates of the cross-country elasticities
obtained from the observed data (Section 4.2).

4.1. Scale e�ects and relative barriers to entry

Herein, we consider the BGP equations relating the technology-structure variables with
the skill-structure variable, (18) and (21). Since these equations establish the endoge-
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nous variables (the technology-structure variables) as functions of the exogenous variables
alone (the relative supply of skills, H/L, and the relative international technology link-
ages, Fh, Fv), then they can be seen as a reduced-form system of equations that can be
estimated by standard OLS.
Moreover, bearing in mind the importance of economic openness (e.g., Edwards, 1992,

1998; Dinopoulos and Thompson, 2000; Ang and Madsen, 2015) and of foreign direct
investment (FDI) (e.g., Coe and Helpman, 1995; Eaton and Kortum, 1996; Borensztein,
Gregorio, and Lee, 1998; Coe, Helpman, and Ho�maister, 2009) for a country's ability
to absorb ideas, we specify, in equations (5) and (8), Fv,m ≡ κυ1mv,m · Oυ2m , υ1m, υ2m > 0
and Fh,m ≡ κγ1mh,m · O

γ2m , γ1m, γ2m > 0, where O is an economic openness indicator
and κv,m (respectively, κh,m) is the ratio of foreign entrant �rms to the total number
of entrants along the vertical (respectively, horizontal) margin in sector m. That is,
there are two types of entrants / �rms that innovate on intermediate goods: domestic
�rms and foreign �rms that are undertaking a direct investment in the economy. This
implies that: regarding vertical entry, Im = Idm + Ifm, with Idm =

∑
i∈D I

i
m (jm), Ifm =∑

i∈F I
i
m (jm), where D is the set of domestic �rms and F the set of foreign �rms, and

thus, κv,m ≡ Ifm/Im; regarding horizontal entry, Ṅm = Ṅd
m+ Ṅf

m, with Ṅd
m =

∑
e∈D Ṅ

e
m,

Ṅf
m =

∑
e∈F Ṅ

e
m, and, thus, κh,m ≡ Ṅf

m/Ṅm. The ratios κv,m and κh,m are constant
along the BGP.13

Economic openness, O, is measured by the ratio of exports plus imports of goods to
GDP,14 while the ratio of foreign entrant �rms to the total number of entrants, κ, is mea-
sured by the ratio of FDI in�ows to GDP. Since the available data on FDI in�ows does not
allow one to distinguish between either vertical/horizontal or low-tech/high-tech entry,
we let κ = κv,m = κh,m, m ∈ {L,H}, implying Fv ≡ Fv,H/Fv,L = κ(υ1H−υ1L)O(υ2H−υ2L)

and Fh ≡ Fh,H/Fh,L = κ(γ1H−γ1L)O(γ2H−γ2L) in (18) and (21). The relative supply of
skills, H/L, is measured as the ratio of college to non-college graduates among persons
employed in manufacturing (see Appendix A for further details on the data).
Then, considering the BGP equations (18) and (21) and the speci�cations for Fv,m

and Fh,m, we run the regressions

ln Ñi = lnZ0 +D0 ln (H/L)i +Bκ
0 lnκi +BO0 lnOi + e0i, (25)

ln
˜̂
Xi = lnZ1 +D1 ln (H/L)i +Bκ

1 lnκi +BO1 lnOi + e1i, (26)

with e0i, e1i denoting the usual stochastic error terms for country i, to get the OLS
estimates D̂0, D̂1, ̂lnZ0, and ̂lnZ1. We use a sample of 22 European countries, from a
total of 30 European countries comprising the EU-27 plus EFTA, subsetting to those
with available data both on relative production and on the relative number of �rms.
Columns (1b) and (2b) of Table 11, in Appendix A, report the OLS estimates of the
coe�cients in regressions (25)-(26). The estimates are all signi�cant at the 1% or the 5%
level, with an R2 of, respectively, 0.34 and 0.42.15

13This is a �ow version of the speci�cation in Borensztein, Gregorio, and Lee (1998).
14See, e.g., Dinopoulos and Thompson (2000) for references and a developed discussion on the choice of

proxy for a country's ability to absorb ideas connected to openness.
15Table 11, in Appendix A, also shows that the sign of the OLS estimates of the coe�cients of economic
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According to equations (19), (20), (22), and (23), the coe�cients D0 and D1 are
functions of (α, σ, ε, δ), and the intercepts, lnZ0 and lnZ1, are functions of (α, σ, h/l, ζ, φ),
in a total of seven structural parameters. There is under-identi�cation of the structural
parameters, since there are only four independent OLS estimates available from the
reduced-form system (25)-(26). However, we calibrate α, σ and h/l, to get identi�cation
of the structural system and to obtain indirect (ILS) estimates of the remaining four
structural parameters, ε, δ, ζ and φ. From (16), we see that the structural parameters
that are key to our analysis are only ε and ζ, and the two other parameters, δ and φ,
are just instrumental to their identi�cation and estimation.16 For robustness, we focus
on the extreme values of the implicit con�dence intervals for the parameters (ε, δ, ζ, φ)
to carry out our quanti�cation exercise.17 These intervals are shown in Figures 3 and 4
and reported in Table 11.
Figure 3 depicts the intersection of the con�dence intervals for the estimates of ε and

δ implicit in the con�dence intervals for the estimates of the slopes of (25)-(26) (com-
puted with their estimated standard errors). This intersection lies inside the theoretical
intersection associated with the existence of scale e�ects pertaining to the technology
structure, as in Figure 2. Figure 4 presents the intersection of the con�dence intervals
for the estimates of ζ and φ implicit in the con�dence intervals for the estimates of the
intercepts of (25)-(26).

[Figure 3 goes about here]

[Figure 4 goes about here]

In order to compute the largest and the smallest admissible values for each element
in (ε, δ, ζ, φ), we assume the following set of baseline values for the remaining structural
parameters: α = 0.6; σ = 0.74 and h/l = 1.3. The elasticity of labour in production,
α, is standard in the literature. The horizontal-R&D complexity cost parameter, σ, is
calibrated to match the ratio between the per capita GDP growth rate and the growth
rate of the number of �rms found in cross-section data for the European countries in
the period 1995-2007. The value for the relative productivity of high-skilled workers,
h/l, comes from Afonso and Thompson (2011), and is also drawn from European data.
However, given the uncertainty surrounding these estimates, we also consider 0.5 and
1.0 as alternative values for σ (although, as shown below, they bear no impact on the

openness and of FDI in�ows to GDP are, respectively, positive and negative in regressions (25) and
(26). Interestingly, these results suggest that the e�ect of international technology linkages captured
by economic openness (respect., FDI in�ows) is relatively stronger in the high-tech (low-tech) sector.

16Appendix C shows that in the case of Acemoglu and Zilibotti's (2001) model, featuring only horizontal
R&D, there is an over-identi�cation of the key structural parameters and, thus, their ILS estimation
is not feasible.

17It is well known that the con�dence intervals computed this way cannot be directly used in statistical
inference. However, our aim here is to compute the range of empirically admissible values for the
structural parameters using the extreme bounds of the con�dence intervals and not to run signi�cance
tests. For a systematic implementation of extreme bounds analysis, see, e.g., Levine and Renelt
(1992).
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Figure 3: Con�dence intervals for the estimates of ε and δ (dashed lines) implicit in the
two-standard-error con�dence intervals for the estimates of the skill-structure
coe�cients of (25)- (26). Bold lines are the same as in Figure 2. Example with
α = 0.6 and σ = 0.5.

Figure 4: Con�dence intervals for the estimates of φ ≡ φH/φL and ζ ≡ ζH/ζL implicit in
the two-standard-error con�dence intervals for the estimates of the intercepts
of 25-26. Example with α = 0.6, σ = 0.5 and h/l = 1.3.
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estimates of ε and ζ), while, following Acemoglu and Zilibotti (2001), we consider 1.8 as
an alternative value for h/l.
The results are depicted in Tables 1 and 2. In particular, we emphasise that: (i) a large

σ is associated with small estimates for δ and large estimates for φ, while the estimates
of ε and ζ are independent of σ; (ii) the estimates of ε are positive and smaller than
unity, while the estimates of δ are smaller than the estimates of ε, and possibly negative;
(iii) the estimates of φ and ζ are above unity.
Results in (i) emerge from the fact that δ and σ have the same qualitative e�ect over the

elasticities D0 and D1, because they are associated to similar substitution e�ects between
vertical and horizontal R&D activities, as explained in Section 3. The qualitative e�ects
of ε and σ are the same over D0 but the opposite over D1, because shifts in ε have a direct
negative impact on both vertical and horizontal R&D, while σ only reduces horizontal
R&D. A similar reasoning applies to the analysis of φ and ζ. Since ε and ζ are the only
structural parameters to be estimated which determine the elasticity of g with respect
to H/L, result (i) implies that the possible ambiguity regarding the true value of σ has
no implication to the quanti�cation of that elasticity (see (16)).
As regards (ii), ε smaller than unity implies that net scale e�ects on growth are pos-

itive, although relatively small.18 The result that δ < ε implies that there is a positive
relationship between population size, measured bym ∈ {L,H} , and the number of �rms,
Nm (see this by solving (10) with respect to Nm), as seems to be the case empirically
(see, e.g., Peretto, 1998). On the other hand, the negative values obtained for δ mean
that the larger the market scale of the m-technology sector, measured by L or H, the
less costly it is to introduce new varieties; this e�ect adds to the direct (positive) e�ect
of the market scale on pro�tability. In contrast, our estimates suggest that a positive
relationship prevails between market scale and the cost to introduce a further jump in
quality of an existing variety, since the estimates of ε are positive in all cases considered.

Result (iii) implies that barriers to entry into the high-tech sector are large relative to
the low-tech sector, irrespective of entry occurring through vertical or horizontal innova-
tion.19,20

18Several empirical studies uncover the existence of scale e�ects of human capital on growth using cross-
section or panel data: e.g., Backus, Kehoe, and Kehoe (1992), Benhabib and Spiegel (1994), Hanushek
and Kimko (2000), Vandenbussche, Aghion, and Meghir (2006), and Hanushek and Woessmann
(2012).

19The literature on the economics of innovation sheds some light on why entry costs may be, in practice,
generally larger in the high- than in the low-tech sectors. Firms in the high-tech sectors tend to face
relatively thin markets, less mature and changing more rapidly than in the low-tech sectors, with the
appropriation of technology through Intellectual Property Rights being more aggressively pursued;
they also rely more heavily on formal planning activities, on customer support and on superior
product warranties, and face environments where regulation more frequently plays a structuring role
(e.g., the biotech industry) (e.g., Covin, Slevin, and Covin, 1990; Qian and Li, 2003; Tunzelmann
and Acha, 2005).

20As referred to earlier, the result that �xed entry costs may be, in practice, larger in the high- than
in the low-tech sectors �nds support in some empirical literature (see fn. 19). To the best of our
knowledge, there are no direct measures of the barriers to entry separated by high- and low-tech
sectors in the literature. However, Bento (2014) computes countrywide entry costs for a cross section
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σ = 0.74 σ = 0.5 σ = 1.0

δ 0.149 −0.267 0.214 −0.117 0.078 −0.430

ε 0.378 0.175 0.378 0.175 0.378 0.175

Table 1: Indirect estimates of structural parameters ε and δ based on the extreme values
of the two-standard-error con�dence intervals for the estimates of the slope
coe�cients in Table 11, columns (1b) and (2b). Computation with α = 0.6.

h/l = 1.3

σ = 0.74 σ = 0.5 σ = 1.0

φ 22.602 12.128 12.628 7.795 42.464 19.579

ζ 3.915 2.642 3.915 2.642 3.915 2.642

h/l = 1.8

σ = 0.74

25.535 13.703

4.798 3.238

Table 2: Indirect estimates of structural parameters φ ≡ φH/φL and ζ ≡ ζH/ζL based
on the extreme values of the two-standard-error con�dence intervals for the
estimates of the intercept coe�cients in Table 11, columns (1b) and (2b). Com-
putation with α = 0.6.

[Table 1 goes about here]

[Table 2 goes about here]

4.2. Growth elasticities

Now, we use the above values for the structural parameters ε and ζ to compute the
predicted economic growth rate, G̃, for each country. Then, we use these simulated
data for the growth rate, together with the observed skill structure for each country, to

compute the OLS estimate of the cross-country growth-skill elasticity, Ê G̃H/L, and compare

with the OLS estimate of the elasticity of the observed economic growth rate (the slope

of regression (5) in Table 11). We also compute the predicted relative production,
˜̂
X,

for each country and the OLS estimate of the cross-country elasticity of the predicted

economic growth rate with respect to the predicted relative production, Ê G̃˜̂
X
, and compare

with the OLS estimate of the elasticity obtained from the observed data.
Substituting in equations (24) and (21) the estimates for the structural parameters ε

and ζ and the baseline and alternative values for σ and h/l (see Tables 1 and 2),21 as well

of 136 countries and �nds a ratio of 51 to 1 between the highest and the lowest decile of entry costs.
A similar ratio is found by Djankov, La Porta, de Silanes, and Shleifer (2002) for a cross section of
85 countries (46 to 1). As shown in Table 2, our estimates suggest that the entry-cost ratio between
the high- and the low-tech sectors may be as high as 4.8 to 1 for vertical entry and 42.5 to 1 for
horizontal entry.

21Since the estimates of ε and ζ are independent of σ, as shown above, we only consider the baseline
value for σ.
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as the observed country data on H, L, O, and κ, we compute the predicted economic
growth rate and relative production for each country. As we have 8 di�erent scenarios,
we obtain 8 simulated sets of country growth rates and production ratios. This allows us
to �nd 8 distinct OLS estimates of the cross-country growth-skill and growth-production

elasticities Ê G̃H/L and Ê G̃˜̂
X
.

Table 3 presents the results. The point estimates of the growth-skill elasticity com-
puted with the simulated data are negative in all scenarios, replicating the sign of the
elasticity estimated with the observed data.22 The magnitude is also well approximated
in particular in the scenarios with the largest admissible value of ε (i.e., the smallest net
scale e�ects of high-skilled labour through vertical R&D) and the smallest admissible
value of ζ. Like in the observed data, the estimates are not signi�cantly di�erent from
zero. The upper limit of the two-standard-error con�dence interval for the estimate ob-
tained from the simulated data lies between 0.148 and 0.214 across the 8 scenarios, while
we �nd an upper bound of 0.146 for the elasticity in the observed data.
In turn, the point estimates of the growth-production elasticity computed with the

simulated data are also negative in all scenarios, while the elasticity estimated with the
observed data is roughly zero. The estimates are not signi�cantly di�erent from zero both
in the case of the simulated data and of the observed data, but the former exaggerates
the standard deviations. The upper limit of the two-standard-error con�dence interval
for the estimate obtained from the simulated data lies between 0.209 and 0.311, the
elasticity in the observed data displays an upper bound of 0.115.

[Table 3 goes about here]

Bearing in mind the possible simultaneity bias issue regarding the regressor in (25)-
(26), we consider four extra scenarios in which we use the initial (1995) value of the skill
structure to estimate the structural parameters, instead of the 1995-2007 average. As
can be seen in Appendix D, the results are roughly unchanged.
All the previous results suggest that our model is able to account for the simultaneous

insigni�cant elasticity between the economic growth rate and both the skill structure and
the technology structure, and the positive elasticity between the technology structure,
measured either as production or as the number of �rms in high- vis-à-vis low-tech
sector, and the skill structure. The analytical mechanism combines: (i) positive net
scale e�ects of high-skilled labour through vertical R&D activities (i.e., vertical-R&D
market complexity costs are small, only partially o�setting the bene�ts of market scale
on pro�ts), and (ii) large relative barriers to vertical entry into the high-tech sector,
which is the employer of the high-skilled workers. While part (i) is a determinant of
the elasticity of the technology structure with respect to the skill structure (i.e., the

22In Section 3.1, we have shown that the theoretical growth-skill elasticity is always positive when
1 − ε > 0 (see (16)). This will imply a positive cross-country growth-skill elasticity if the structural
parameters in (16) are homogeneous across countries. However, in practice, these parameters may be
country speci�c and, as result, we can get negative point estimates for that elasticity in a quantitative
exercise applied to a cross section of countries.
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ε ζ A Ê G̃H/L (s.e.) Ê G̃˜̂
X
(s.e.)

σ = 0.74; h/l = 1.3

0.175 2.642 0.2434 -0.0786 (0.283) -0.0915 (0.330)

3.915 0.2517 -0.1051 (0.284) -0.1225 (0.331)

0.378 2.642 0.6488 -0.0384 (0.210) -0.0663 (0.362)

3.915 0.6772 -0.0627 (0.211) -0.1081 (0.365)

σ = 0.74; h/l = 1.8

0.175 3.238 0.2403 -0.0687 (0.283) -0.0800 (0.329)

4.798 0.2494 -0.0977 (0.284) -0.1138 (0.331)

0.378 3.238 0.6384 -0.0296 (0.209) -0.0510 (0.362)

4.798 0.6693 -0.0558 (0.211) -0.0963 (0.364)

Table 3: Simulation results for the cross-country growth-skill and growth-production elasticities.

Ê G̃H/L and Ê G̃˜̂
X
denote the OLS estimate of the elasticity of the predicted growth rate,

G̃, with respect to, respectively, the observed skill structure and predicted relative

production,
˜̂
X (heteroskedasticity-consistent s.e. in brackets). Values for

˜̂
X and G̃ are

obtained by setting α = 0.6, ρ = 0.02, θ = 1.5, and λ = 2.5, in line with the standard

growth literature (e.g., Barro and Sala-i-Martin, 2004); the value for A is chosen such

that the cross-country average of the predicted economic growth rate matches the cross-

country weighted average of the observed growth rate (2.024% for the 22 countries);

values for ε and ζ are set in accordance to the estimation exercise in Tables 1 and

2. For comparison: the estimate of the elasticity of the observed economic growth

rate with respect to the observed skill structure and observed relative production is,

respectively,−0.026 (s.e. of 0.172) and −0.003 (s.e. of 0.118).
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slope of the regression lines (25)-(26)), part (ii) in�uences the level of the technology-
structure variables (i.e., the intercept of the regression lines). However, both (i) and (ii)
determine the growth elasticities. The two factors impact this cross-country elasticities
with opposite signs, with the positive impact of scale e�ects being o�set by the negative
e�ect of relative barriers to entry. This result stems from the negative relationship
between the size of relative barriers to entry and the impact of the skill structure on a
country's growth rate (see elasticity (16)).

4.3. Policy implications

In this section, a counterfactual policy experiment is conducted to quantify the e�ect of
a reduction in relative barriers to (vertical) entry into the high-tech sector on the growth
elasticities. First, we calibrate A, in (14), as a country-speci�c parameter, such that the
predicted and the observed growth rates match exactly for each individual country. This
enables an exact matching to the observed cross-country growth-skill elasticity. Then,
we compute the reduction of relative vertical R&D �ow-�xed costs, ζ ≡ ζH/ζL, that
leads to an increase in the estimate of the growth-skill elasticity that excludes zero from
the respective two-standard deviation con�dence interval. This amounts to increase the
point estimate of the growth-skill eslasticity to about 0.17.
Table 4 depicts the main results. The estimate of the required reduction of relative

barriers to entry varies between 79% and 88% across the eight scenarios considered. This
reduction leads to ζ < 1 in all cases, i.e., barriers to entry into the high-tech sector
must become smaller than those in the low-tech sector. The growth-production elasticity
increases somewhat more than the growth-skill elasticity, to about 0.2 to 0.3.

[Table 4 goes about here]

Our numerical results show that the impact of relative barriers to entry on the growth
elasticities is convex, i.e., for smaller initial barriers to entry, a given absolute reduction

in those barriers produces a larger increase in Ê G̃H/L and Ê G̃˜̂
X
. For instance, under the �rst

scenario in Table 4, a reduction of ζ from 2.642 to 0.52 increases Ê G̃H/L from −0.026 to

0.171, whereas a reduction of ζ from 0.52 to 0.20 further increases Ê G̃H/L from 0.1715 to
0.322. It can be shown that a similar outcome occurs under the other scenarios.
These results suggest that the e�ectiveness of industrial policy aiming at a reduction

of relative barriers to entry in the high-tech sector is negatively related to the initial
level of those barriers. Therefore, accordingly, not only should policymakers be aware of
the well-known time lags between the timing of implementation of this type of policies
and the production of impact (a dimension of analysis not considered here), but also of
the fact that barriers must be brougth down to considerable low levels before they start
producing signi�cant results.
Overall, an interesting policy implication arises from these results: industrial policy

aiming to reduce relative barriers to entry in the high-tech sectors may e�ectively reinforce
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σ = 0.74; h/l = 1.3

ε 0.175 0.378

ζ old 2.642 3.915 2.642 3.915

ζ new 0.520 0.615 0.380 0.470

chg in ζ -80.3% -84.3% -85.6% -88.0%

Avg G̃ 4.789% 4.678% 6.522% 6.135%

Ê g̃H/L 0.171 0.171 0.170 0.170

Ê G̃˜̂
X

0.200 0.199 0.293 0.293

σ = 0.74; h/l = 1.8

ε 0.175 0.378

ζ old 3.238 4.798 3.238 4.798

ζ new 0.680 0.815 0.480 0.610

chg in ζ -79.0% -83.0% -85.2% -87.3%

Avg G̃ 4.824% 4.701% 6.732% 6.255%

Ê g̃H/L 0.171 0.170 0.171 0.170

Ê G̃˜̂
X

0.199 0.199 0.294 0.293

Table 4: Counterfactual experiment by considering a reduction of relative barriers to (vertical)

entry into the high-tech sector, ζ ≡ ζH/ζL, that leads to a signi�cant positive estimate

of the growth-skill elasticity. A is calibrated as a country-speci�c parameter, such

that the observed and the (pre-shock) predicted growth rate match exactly for each

individual country.
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the e�ect of education policy (e.g., incentives for households to accumulate skills via
improvement of the educational attainment level) on a country's growth. Given the
cross-section nature of our study and the implied assumption of homogeneous relative
barriers to entry across countries, as well as the fact that our sample comprises countries
belonging to the European Union, it seems particularly adequate to think of this policy
implication as pertaining to EU supranational government intervention on industrial
policies.
Nonetheless, it is also important to note that growth in a country that displays a

more favourable skill structure (a higher proportion of high-skilled labour) bene�ts more
from a given reduction in relative barriers to entry, as made clear by the elasticity (16).
For example, Belgium and Portugal have similar observed per capita GDP growth rates
(1.9%), but the former has a larger proportion of high-skilled labour (0.295) than the
latter (0.042). Then, e.g., considering a reduction of 84% in ζ (as an average of the upper-
panel four scenarios depicted by Table 4), the model predicts a change in the growth rate
of 0.59 percentage points (relative increase of 30%) in Portugal and of 1.97 p.p. (102%)
in Belgium. In Ireland, the country with the largest proportion of high-skilled labour in
our sample (0.33), the relative increase in the growth rate is of 128% (see column (3) in
Table 6). This mechanism is, of course, the reason why the growth-skill cross-country
elasticity increases with a decrease in ζ. This also means that a country's education
policy has the potential to leverage the e�ect of a barriers-reducing industrial policy on
growth.
European politicians have also emphasised the need to increase the share of the high-

tech sector, with a view to reducing the gap with the US, as part of the European
growth strategy. Therefore, as a second counterfactual exercise, we decrease the relative
entry costs into the high-tech sector such that the average European share of the high-
tech sector is raised to the US level and compute the impact in the European long-run
economic growth rate. Table 5 summarises the results for the scenario with σ = 0.74 and
h/l = 1.3. A simultaneous reduction of ζ and φ by, respectively, 34% and 61% increases
the share of the production of the high-tech sector in Europe (22 countries average)
by 0.167 points and the share of the number of �rms by 0.116 points (relative increase
of, respectively, 61% and 117%) to about the US level, while it increases the European
economic growth rate by 0.22 p.p (relative increase of 7.4%).
However, the small relative production and number of �rms vis-à-vis de US also re�ects

the di�erent skill structure in Europe (0.178, for the 22-countries average) versus the US
(0.398). In order to account for this, alternatively we consider the counterfactual exercise
of an increase in the average European skill ratio such that the share of the high-tech
sector is raised to the US level. According to our exercise (in this case we only target
relative production), the average European skill ratio must be increased to 0.345 (relative
increase of 94%), inducing an increase of the average economic growth rate by 0.27 p.p.
(relative increase of 8.9%). By comparing the relative change in the policy variables,
H/L or ζ and φ, in modulus, with the relative change in the predicted growth rate,
we get a ratio of, respectively, 10.5 or 4.6 and 8.3. In other words, an increase of the
European growth rate by 0.1 percentage points requires a change in H/L or ζ and φ
of, respectively, 35.1% or -15.4% and -27.7%. In light of these results, we conclude it
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Observed Predicted

φ = 16.557;ζ = 3.216 φ = 6.480; ζ = 2.135 φ = 16.557;ζ = 3.216

H/L = 0.178 (avg) H/L = 0.178 (avg) H/L = 0.345 (avg)

Relative production 0.310 0.273 0.440 [targeted] 0.440 [targeted]

Relative number of �rms 0.105 0.099 0.215 [targeted] 0.133

GDPpc growth rate 2.993% 2.993% [targeted] 3.213% 3.260%

Table 5: Counterfactual experiment by considering a reduction of relative barriers to entry into

the high-tech sector, ζ ≡ ζH/ζL and φ ≡ φH/φL, or an increase in the relative supply of

skills, H/L, such that the average European share of the high-tech sector (22 countries)

is raised to the US level (0.440 for relative production and 0.215 for the relative number

of �rms, 1995-2007 average). Computation for the scenario with σ = 0.74, h/l = 1.3,

where the initial values for ζ and for φ are indirect estimates based on the point

estimates of the intercept coe�cients in Table 11, columns (1b) and (2b). A is calibrated

as a country-speci�c parameter, such that the observed and the (pre-shock) predicted

growth rate match exactly for each individual country.

is more e�cient for policy to target relative barriers to entry than the supply of skills.
However, importantly, whatever the chosen policy variables, the predicted growth e�ects
are modest relative to the size of the policy action.

[Table 5 goes about here]

5. Country-speci�c relative barriers to entry

A recent literature has found a signi�cant relationship between the cross-country variabil-
ity of (countrywide) entry costs and the observed dispersion of per capita output levels
across countries (e.g., Bento, 2014). Motivated by these �ndings, we now check whether
allowing for cross-country variability of relative barriers to entry in the high-tech sector
(i.e., relaxing the assumption that all countries face the same relative barriers) a�ects
our results relating the per capita output growth rate and the skill structure.
To be speci�c, we now assume that the level terms in (18) and (21), Z0 and Z1,

comprise both an homogeneous component across countries, Z̄0 and Z̄1, and a country-
speci�c component, Zc0i and Z

c
1i. Thus, we re-write equations (18), (20), (21), and (23),

considering now that, for each country i,

Ñi = Z0i ·
(
H

L

)D0

i

, (27)

where
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Z0i ≡ (h/l)
1

σ+1 · φ̄
−1
σ+1 · ζ̄

−1
σ+1︸ ︷︷ ︸

≡Z̄0

· (φci )
−1
σ+1 · (ζci )

−1
σ+1︸ ︷︷ ︸

≡Zc0i

, (28)

and

˜̂
Xi = Z1i ·

(
H

L

)D1

i

, (29)

where

Z1i ≡ (h/l)[1+( σ
σ+1)( α

1−α)] · φ̄
α

(σ+1)(1−α) · ζ̄−[1+( 2σ+1
σ+1 )( α

1−α)]︸ ︷︷ ︸
≡Z̄1

·

·(φci )
α

(σ+1)(1−α) · (ζci )
−[1+( 2σ+1

σ+1 )( α
1−α)]︸ ︷︷ ︸

≡Zc1i

, (30)

and φi = φ̄ ·φci and ζi = ζ̄ ·ζci . Observe that φ̄ and ζ̄ denote the homogeneous components
of relative barriers to entry (which, in Section 4, were denoted by φ and ζ), while φci and
ζci denote the country-speci�c components. The elasticities D0 and D1 are the same as
in Section 3.2.
In order to quantify the new structural parameters φci and ζ

c
i , we allow the country-

speci�c terms Zc0i and Z
c
1i to be random variables uncorrelated with each country's skill

structure and then, by applying logs to (27) and (29), run the regressions

ln Ñi = ln Z̄0 +D0 ln (H/L)i +Bκ
0 lnκi +BO0 lnOi + lnZc0i, (31)

ln
˜̂
Xi = ln Z̄1 +D1 ln (H/L)i +Bκ

1 lnκi +BO1 lnOi + lnZc1i, (32)

where lnZc0i and lnZc1i stand for the respective stochastic error terms. Except for the
(now) structural de�nition of the error terms, regressions (31)-(32) are similar to regres-
sions (25)-(26), and, thus, the OLS estimates of their intercepts and slopes (from which
we recover δ, ε, φ̄ and ζ̄, for given α, σ and h/l) are unchanged. However, we are also
able to use the regression residuals, together with the analytical expressions for Zc0i and
Zc1i in (28) and (30), to recover φci and ζ

c
i .
23

Our results show that the country-speci�c component of relative barriers to entry
varies considerably across countries (see Table 6, columns (1) and (2)), with a variation
coe�cient of 0.273 (vertical entry) and 0.529 (horizontal entry) versus 0.393 for the
economic growth rate. Nevertheless, there is a roughly null correlation between our
estimates of country-speci�c barriers and both the observed economic growth rate and
the skill structure, as depicted by Table 7. We �nd that the consideration of country-
speci�c barriers does not a�ect the predicted growth elasticities; see Table 8, for the case
of σ = 0.74 and h/l = 1.3. Thus, these results suggest that the role of relative barriers to
entry in explaining the observed cross-country growth elasticities relies on the interaction

23See, e.g., Caselli and Coleman (2006) for a similar procedure, applied to the quanti�cation of country-
speci�c technology frontiers.

31



of the homogeneous component of relative barriers with each country's skill structure,
instead of on the variability of the country-speci�c component of relative barriers across
countries.

[Table 6 goes about here]

[Table 7 goes about here]

[Table 8 goes about here]

Some authors interpret the country-speci�c component of barriers to entry as pertain-
ing to regulatory costs and its homogeneous component as non-regulatory costs (see,
e.g., Bento, 2014). If we allow for this interpretation in our case, then our results further
suggest that the regulatory costs are of little importance for the growth-skill and growth-
production relationships across the European countries. An alternative conjecture is that
both the non-regulatory and the regulatory components tend to constitute homogeneous
barriers to entry across these countries, possibly as an e�ect of the process of European
integration in terms of regulatory framework. This, of course, strengthens the pertinence
of the view laid out in Section 4.3 of a barriers-reducing industrial policy set at the EU
supranational level.
We have re-run the counterfactual policy experiment of Section 4.3, for the case of

country-speci�c relative barriers to entry, where φi = φ̄ ·φci and ζi = ζ̄ ·ζci , and found that
the results are similar to the case of homogeneous barriers. The proportional reduction
in (average) relative barriers that leads to a signi�cant positive estimate of the cross-
country growth-skill elasticity is roughly the same in the homogeneous and in the country-
speci�c case (change of -84% and -85%, respectively; see Table 6, columns (3) and (4)).
However, if we take the analysis to the individual country level, we �nd that when barriers
are assumed homogeneous across countries, the model over(under)-estimates the impact
on the growth rate of those countries that actually have above(below)-average relative
barriers to entry, i.e., that have a country-speci�c component ζci larger (smaller) than
unity. This is due to the already noted non-linear impact of relative barriers to entry on
growth, implying that the lower the relative barriers to entry, the larger the impact of a
further reduction in those barriers on a country's growth rate. On the other hand, the
larger the proportion of high-skilled labour in a country, the more intense the described
over(under)-estimation e�ect. For instance, in the homogeneous case, the countries that
bene�t the most from a given proportional reduction in relative barriers are Ireland and
Finland, the countries with the largest share of high-skilled labour in the sample. In
the country-speci�c case, those countries are Ireland and Germany, whose below-average
relative barriers to entry combine with a fairly large, above-average, high-skilled labour
ratio. Portugal is the country that bene�ts the least in both cases, since it boasts the
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(1) (2) (3) (4)

φ̄ = 16.557 ζ̄ = 3.216 Relative impact of a reduction in ζ on a country's growth rate

Country φci ζci Homogeneous case Country-speci�c case

(∆ζ = −84%) (∆ζi = −85%)

Austria 0.8468 0.8758 59% 68%

Belgium 1.3298 1.2359 102% 88%

Bulgaria 0.7563 1.0009 52% 53%

Czech Republic 0.9304 0.9510 60% 64%

Denmark 0.7981 0.9744 88% 93%

Finland 1.6172 1.1142 115% 108%

France 1.0031 0.7497 76% 99%

Germany 0.5231 0.8138 102% 123%

Greece 2.0633 1.7093 59% 37%

Hungary 1.0354 0.8867 82% 93%

Ireland 1.3493 0.9634 128% 135%

Italy 0.5144 0.7065 38% 54%

Netherlands 0.8716 1.0205 87% 88%

Norway 1.1566 1.2374 81% 69%

Poland 0.5656 0.9996 65% 67%

Portugal 2.7977 1.2352 30% 25%

Romania 2.0179 1.6686 59% 38%

Slovak Republic 0.4940 0.7734 49% 63%

Slovenia 0.9977 1.0797 75% 72%

Spain 1.6942 1.3308 89% 72%

Sweden 0.7196 0.6632 71% 102%

United Kingdom 0.6497 0.7409 88% 115%

Table 6: Columns (1)-(2): indirect estimates of structural parameters φ̄ and ζ̄ (the homogeneous

components of relative barriers to entry), and φci and ζ
c
i (country-speci�c components),

based on the point estimates of the intercept coe�cients in Table 11, columns (1b) and

(2b), and the estimation residuals of those regressions (not shown); computation for

the scenario with σ = 0.74, h/l = 1.3. Columns (3)-(4): relative e�ect on a country's

growth rate of a counterfactual reduction of relative barriers to entry (ζ in column

(3) and ζi = ζ̄ · ζci in column (4)) that leads to a signi�cant positive estimate of the

cross-country growth-skill elasticity; A is calibrated such that the observed and the

(pre-shock) predicted growth rate match exactly for each individual country.
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ζci φci
φci 0.772 (5.432) -

pc GDP growth rate 0.114 (0.512) -0.016 (-0.073)

Skills structure -0.039 (-0.174) -0.044 (-0.196)

Table 7: Correlation of the country-speci�c relative barriers to entry (Table 6, columns (1) and

(2)) with the per capita GDP growth rate and the skills structure in a cross-section of

European countries, 1995-2007 average (t-statistic in brakets).

ε ζ A Ê G̃H/L Ê G̃˜̂
X

σ = 0.74; h/l = 1.3

Homogeneous 0.277 3.216 0.4075 −0.0703 −0.0980

Country-speci�c 0.277 3.323(avg) 0.3988 −0.0708 −0.0987

Table 8: Simulation results for the cross-country growth-skill and growth-production elasticity:

homogeneous case (relative barriers to entry are assumed homogeneous across coun-

tries) versus country-speci�c case (relative barriers to entry have an homogeneous and

a country-speci�c component). Ê G̃H/L and Ê G̃˜̂
X
denote the OLS estimate of the elasticity

of the predicted growth rate, G̃, with respect to, respectively, the observed skill struc-

ture and predicted relative production,
˜̂
X. Values for

˜̂
X and G̃ are obtained as in Table

3. Values for ζi = ζ̄ · ζci (country-speci�c case) are set in accordance to the estimation

exercise in Table 6, column (2). Values for ζ (homogeneous case) and for ε are indirect

estimates based on the point estimates of the intercept and slope coe�cients in Table

11, columns (1b) and (2b).
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smallest share of high-skilled labour in the sample, combined with quite large (vertical)
relative barriers to entry (the 4th largest in the sample).
By the same token, as regards the second counterfactual experiment, we analyse the

growth e�ect of a decrease in the entry costs into the high-tech sector such that the
share of the high-tech sector in each individual country is raised to the US level. We
focus our attention on the countries that display a share of the high-tech sector that is
simultaneously smaller than in the US and the 22-European country average: Bulgaria,
Greece, Italy, Norway, Poland, Portugal, Romania, and Spain. Table 9 summarises the
results. By comparing the relative change in the policy variable (H/L, or ζ and φ) with
the relative change in the predicted growth rate in each country, we �nd that the ratio
is larger for H/L in all selected countries, showing that it is more e�cient for policy
to target relative barriers to entry than the supply of skills. However, whatever the
chosen policy variables, the predicted growth e�ects are modest relative to the size of
the policy action, as in the case of homogeneous relative barriers across countries. The
countries with worst performance are Portugal, Italy, Romania and Greece, re�ecting a
particularly unfavourable combination of initial larger relative barriers to entry into the
high-tech sector and low skills ratio in these countries.

[Table 9 goes about here]

Finally, we look further into the nature of the country-speci�c relative barriers to
entry into the high-tech sector and its possible empirical relationship with country-level
regulatory barriers and �nancial development, two factors typically underlined by the em-
pirical growth literature as producing detrimental e�ects on economic development (e.g.,
Djankov, La Porta, de Silanes, and Shleifer, 2002; Barro and Sala-i-Martin, 2004; Cihák,
Demirgüç-Kunt, Feyen, and Levine, 2013). We see this as an exploratory (reduced-
form) step building on the structural analysis described above. Thus, we computed the
correlation between φci , ζ

c
i and the countrywide regulatory costs to create a business

(data for 1999, taken from Djankov, La Porta, de Silanes, and Shleifer, 2002), in or-
der to explore the hypothesis that the level of the (country-speci�c) relative barriers
to entry into the high-tech sector may be associated with a countrywide regulatory ef-
fect impinging more strongly on the high-tech sector. Table 10 indeed shows that the
correlation is positive for all indicators of regulatory costs, being larger for those costs
measured as the number of days to create a business. We explore a similar hypothesis
applied to �nancial development based on a number of �nancial depth indicators (data
for 1995 or 1999, taken from the Global Financial Development database, available at
www.worldbank.org/financialdevelopment, and described in Cihák, Demirgüç-Kunt,
Feyen, and Levine, 2013). The correlation is negative for all indicators, suggesting that a
higher �nancial development bene�ts relatively more the high-tech sector.24 In this case,

24We do not report the correlation of the country-speci�c relative barriers with bank deposits to GDP, a
popular indicator of �nancial development, since it has a correlation of above 0.9 with liquid liabilities
to GDP in our sample.
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predicted GDPpc growth rate (%)

Italy
φi = 8.52;ζi = 2.27;H

L
= 0.053 φi = 4.43;ζi = 1.49;H

L
= 0.053 φi = 8.52;ζi = 2.27;H

L
= 0.151

1.164% [targeted] 1.225% (9.2; 6.6) 1.298% (16.2)

Norway
φi = 19.15;ζi = 3.98;H

L
= 0.217 φi = 6.20;ζi = 2.06;H

L
= 0.217 φi = 19.15;ζi = 3.98;H

L
= 1.010

2.217% [targeted] 2.484% (5.6; 4.0) 2.806% (13.7)

Poland
φi = 9.37;ζi = 3.21; H

L
= 0.136 φi = 5.87;ζi = 1.90;H

L
= 0.136 φi = 9.37;ζi = 3.21; H

L
= 0.775

4.656% [targeted] 5.057% (4.3; 4.7) 6.112% (15.0)

Portugal
φi = 46.32;ζi = 3.97; H

L
= 0.042 φi = 3.48;ζi = 1.27;H

L
= 0.042 φi = 46.32;ζi = 3.97; H

L
= 0.277

1.943% [targeted] 2.137% (9.2; 6.8) 2.209% (40.3)

Spain
φi = 28.05;ζi = 4.28; H

L
= 0.294 φi = 6.35;ζi = 2.05;H

L
= 0.294 φi = 28.05;ζi = 4.28; H

L
= 1.260

2.585% [targeted] 2.964% (5.3; 3.6) 3.224% (13.3)

Greece
φi = 34.17;ζi = 5.50; H

L
= 0.124 φi = 5.32;ζi = 1.77; H

L
= 0.124 φi = 34.17;ζi = 5.50; H

L
= 1.880

3.302% [targeted] 3.783% (5.8; 4.6) 4.716% (33.2)

Bulgaria
φi = 12.52;ζi = 3.22; H

L
= 0.146 φi = 3.66;ζi = 1.44;H

L
= 0.146 φi = 12.52;ζi = 3.22; H

L
= 1.141

3.975% [targeted] 4.463% (5.8; 4.5) 5.323% (20.1)

Romania
φi = 33.41;ζi = 5.37; H

L
= 0.093 φi = 6.08;ζi = 1.95;H

L
= 0.093 φi = 33.41;ζi = 5.37; H

L
= 1.000

3.734% [targeted] 4.195% (6.6; 5.2) 4.936% (30.4)

Table 9: Counterfactual experiment by considering a reduction of relative barriers to entry into

the high-tech sector, φi = φ̄ · φci and ζi = ζ̄ · ζci , or an increase in the relative supply

of skills, H/L, such that the share of the high-tech sector in each country is raised to

the US level (0.440 for relative production and 0.215 for the relative number of �rms,

1995-2007 average). Computation for the scenario with σ = 0.74, h/l = 1.3, where

the initial values for ζi and for φi are indirect estimates based on the point estimates

of the intercept coe�cients in Table 11, columns (1b) and (2b), and the estimation

residuals of those regressions (not shown). A is calibrated such that the observed and

the (pre-shock) predicted growth rate match exactly for each individual country. We

present in parentheses the ratio between the relative change in the policy variable (φi
and ζi, or H/L), in modulus, and the relative change in the predicted growth rate.
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ζci φci
Regulatory costs Number of procedures 1999 0.261 (1.210) 0.212 (0.970)

to create Number of days 1999 0.284 (1.325) 0.301 (1.413)

a business Cost 1999 (% pcGDP) 0.199 (0.910) 0.141 (0.637)

Liquid liabilities 1995 (% GDP) -0.297 (-1.393) -0.300 (-1.406)

Financial Gross portfolio debt liabilities 1999 (% GDP) -0.243 (-1.120) -0.256 (-1.187)

depth Gross portfolio equity liabilities 1999 (% GDP) -0.156 (-0.708) -0.217 (-0.992)

indicators Stock market capitalization 1995 (% GDP) -0.140 (-0.634) -0.237 (-1.089)

Domestic credit to private sector 1995 (% GDP) -0.262 (-1.213) -0.276 (-1.284)

Banks' assets 1995 (% GDP) -0.224 (-1.028) -0.234 (-1.077)

Table 10: Correlation of the country-speci�c relative barriers to entry (Table 6, columns (1) and

(2)) with the countrywide regulatory costs to create a business (upper panel; source:

Djankov, La Porta, de Silanes, and Shleifer, 2002) and �nancial depth indicators (lower

panel; source: Global Financial Development Database, available at www.worldbank.

org/financialdevelopment) (t-statistic in brakets).

the correlation is larger (in modulus) for the ratio of liquid liabilities to GDP.25

[Table 10 goes about here]

6. Concluding remarks

This paper builds an endogenous growth model of directed technical change with simul-
taneous vertical and horizontal R&D and scale e�ects to study an analytical mechanism
that is consistent, for a feasible set of parameter values, with the observed cross-country
pattern in the skill structure, the technology structure and economic growth. Our re-
sults indicate that the cross-country di�erences in the skill structure, combined with the
existence of intermediate levels of market complexity costs and high relative �xed entry
costs in the high-tech sectors, are consistent with the observed pattern in the number of
�rms and production in high- versus low-tech sectors and with the relationship between
economic growth and the skill structure.
Moreover, our estimates suggest that larger markets induce smaller costs as regards

horizontal R&D activities but larger costs concerning vertical R&D. That is, in this
regard, there is an apparent asymmetry between the introduction of new varieties of
technological goods and the introduction of a further jump in quality of an existing
variety. It is also noteworthy the importance of distinguishing between the e�ects of

25The inclusion of these variables in regressions (25) and (26) (e.g., to test the hypothesis that they
may impact the R&D performance by interacting with the international linkages e�ects) turned out
non-signi�cant in all cases, which suggests that there is no speci�cation bias implied by omitting
these variables in the estimation exercise carried out in Section 4.1.
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industrial policies targeted at vertical R&D � which can be seen as pertaining to process
innovation and incremental product innovation � and those targeted at horizontal R&D
� pertaining to radical product innovation.26 For instance, a reduction of the market
complexity costs related to vertical R&D and of the R&D complexity costs related to
horizontal R&D will have a similar, positive, impact on economic growth, but an asym-
metric impact on the technology structure: for a given relative supply of skills below
unity, a decrease of the �rst type of costs implies a smaller concentration of activity in
high- vis-à-vis low-tech sectors in terms of the number of �rms, production and �rm size;
a decrease of the second type implies a decrease of the proportion of high- versus the
low-tech sectors in terms of the number of �rms only.
By linking the determinants of the technology structure to economic growth, our model

allows us to derive a set of policy implications: (i) the e�ects of a country's education
policy (e.g., incentives for households to improve their educational attainment level),
or say of measures to revert brain-drain �ows, on economic growth may be e�ectively
leveraged by industrial policy and vice versa; (ii) in particular, the latter should aim to
reduce the �xed-entry costs originating relatively larger barriers to entry in the high-tech
sectors (e.g., the alleviation of the regulatory and IPR bureaucratic environment faced
by technology-intensive �rms or the reduction of their information and management �ow
�xed costs at �rm creation, say through the promotion of mentoring and business-angels
activities), such that barriers to entry in the high-tech sector are brought down below
those in the low-tech sector; these forms of industrial policy should complement the direct
subsidisation of R&D activities usually emphasised in the economic growth literature;
(iii) the e�ectiveness of industrial policy aiming at a reduction of barriers to entry in the
high-tech sector is negatively related to the initial level of those barriers. Our reduced-
form results also suggest that a reduction of overall regulatory costs to create a business
or an increase in a country's �nancial development may be associated with the reduction
of relative barriers to entry into the high-tech sector. Given the exploratory nature of our
results in this regard, this is a topic that deserves further investigation in future work.
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Appendix

A. Data and empirical evidence: technology structure, skill
structure and growth

The cross-country data with respect to the technology structure, measured by the number
of �rms and by production in high- vis-à-vis low-tech manufacturing sectors, was collected
by considering the OECD high-tech low-tech classi�cation (see Hatzichronoglou, 1997).27

We also collected data on the skill structure, i.e., the ratio of high- to low-skilled workers
or the relative supply of skills, measured as the ratio of college to non-college graduates
among persons employed in manufacturing. �College graduates� refers to those who have
completed tertiary education (corresponding to the International Standard Classi�cation
of Education [ISCED] levels 5 and 6), while �non-college graduates� refers to those who
have completed higher-secondary education or less (ISCED levels from 0 to 4). The data
concerns the 1995-2007 period and covers 22 European countries regarding,28 respectively,
the number of �rms, production,29 and the supply of skills (educational attainment).
The sources are the OECD STAN Database for Structural Analysis, the OECD SDBS
Structural Business Statistics (available at www.stats.oecd.org), and the Eurostat on-
line database on Science, Technology and Innovation � tables �Economic statistics on
high-tech industries and knowledge-intensive services at the national level� and �Annual
data on employment in technology and knowledge-intensive sectors at the national level,
by level of education� (available at http://epp.eurostat.ec.europa.eu).
At the aggregate level, we gathered country data on the per capita real GDP growth

rates for the same period and on economic openness in 1995, measured as the ratio of
exports plus imports of goods over the GDP, also from the Eurostat on-line database,
while the data on the FDI in�ows for 1995-1997 was taken from the IMF on-line database
(http://www.imf.org/external/data.htm).
Table 11 reports the details on the OLS regressions run on the data described above.

[Table 11 goes about here]

27High-tech industries are, e.g., aerospace, computers and o�ce machinery, electronics and communica-
tions, and pharmaceuticals, while the low-tech industries comprise, e.g., petroleum re�ning, ferrous
metals, paper and printing, textiles and clothing, wood and furniture, and food and beverages.

28The 22 countries are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Ger-
many, Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Portugal, Slovak Republic,
Romania, Slovenia, Spain, Sweden, and the United Kingdom.

29According to our theoretical model, we should restrict our analysis to the production of intermediate
and capital goods. However, we were not able to �nd data according to the OECD classi�cation of
high- and low-tech sectors detailed by type of good and thus focused on total production in each
sector.
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Dependent ln Relative ln Relative ln GDPpc

variable number of �rms production growth rate

(1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c)

Constant −1.894 −2.134 -2.182 −0.584 −0.816 −0.929 −3.231 −3.637 −3.427

(s.e.) (0.287) (0.292) (0.290) (0.346) (0.348) (0.404) (0.365) (0.298) (0.355)

ln Relative supply 0.242 0.450 - 0.430 0.719 - 0.163 −0.026 0.033

of skills 1995-2007

(s.e.) (0.169) (0.178) (0.160) (0.140) (0.185) (0.172) (0.142)

ln Relative supply - - 0.332 - - 0.502 - - -
of skills 1995

(s.e.) (0.198) (0.190)

ln FDI/GDP 1995-97 - −0.234 −0.196 - −0.323 −0.254 - - −0.060

(s.e.) (0.064) (0.070) (0.08) (0.09) (0.060)

ln Trade/GDP 1995 - 0.520 0.428 - 0.883 0.732 - - 0.592

(s.e.) (0.239) (0.214) (0.263) (0.272) (0.232)

Observations 22 22 22 22 22 22 30 22 22

R2 0.092 0.340 0.248 0.144 0.419 0.282 0.032 0.002 0.241

Table 11: OLS regressions of the technology-structure variables (the relative number of �rms

and relative production) and the economic growth rate on the relative supply of skills

(i.e., the ratio of high- to low- skilled labour), 1995-1997 FDI in�ows to GDP and

1995 trade openness, in logs. Regression in column (3a) was run for the 30 Euro-

pean countries comprising the EU-27 plus EFTA. Regressions in the other columns

were run using the common sample of 22 European countries with available data

on relative production and the relative number of �rms. Standard errors (s.e.) are

heteroskedasticity consistent.
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B. Proxy for quality-adjusted production

Assume that j follows a Poisson distribution with parameter I · t, j ∼ Po(I · t) over [0, t].

Then E
(
λβj
)

= e−(1−λβ)It. Proof:

E
(
λβj
)

= E
((

λβ
)j)

=
∞∑
j=0

(
λβ
)j e−It (It)j

j!
=

= eItλ
β
e−It

∞∑
j=0

e−Itλ
β (
Itλβ

)j
j!

= eItλ
β
e−It = e−It(1−λ

β).

Next, consider the random variables Z ≡ λj
1−α
α and K ≡ λj

1
α , as well as the sum

of the random variables Zi, i.i.d. of Z, in Qm =
∑Nm

i Zmi, and Ki, i.i.d. of K, in
Qm =

∑Nm
i Kmi, m ∈ {L,H}. Then, for a given Nm, we get

E(Qm) = Nme
−Imt(1−λ

1−α
α ), (33)

E(Qm) = Nme
−Imt(1−λ

1
α ). (34)

Using ln(v + 1) ≈ v for v small enough, (33) and (34) can be rewritten as follows

E(Qm) = Nme
Imt( 1−α

α ) lnλ = Nmλ
Imt( 1−α

α ), (35)

E(Qm) = Nme
Imt( 1

α) lnλ = Nmλ
Imt( 1

α). (36)

Thus, E(Qm)/E(Qm) = λImt(
1
α
− 1−α

α ) = λImt, which goes to ∞ as t → ∞. However,
given (35) and (36), we also have

(E(Qm))(
1

1−α)N
−( α

1−α)
m = Nmλ

Imt( 1
α) = E(Qm). (37)

Since, in our model, Qm is treated as a continuous deterministic variable, we consider
the following proxy, Q̂m, as a deterministic version of (37)

Q̂m = Q
1

1−α
m ·N

−( α
1−α)

m .

It can then be shown that Qm/Q̂m = constant.

C. Acemoglu and Zilibotti's (2001) model of horizontal
R&D

In this Appendix, we present the system of equations pertaining to the BGP relationship
between the technology structure and the skill structure in the case of the Acemoglu and
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Zilibotti's (2001) model of horizontal R&D, extended only with a �exible degree of scale
e�ects and heterogeneous �ow �xed costs to (horizontal) R&D across the H−and the
L−technology sector. Retaining the notation from Section 2, we get

Ñ ≡
˜(
NH

NL

)
=

(
h

l

)
· φ−2 ·

(
H

L

)1−2δ

· F 2
h , (38)

X̃ ≡
˜(
XH

XL

)
=
h

l
· φ−1 ·

(
H

L

)1−δ
Fh. (39)

Let D0 ≡ 1 − 2δ, Z0 ≡ (h/l) · φ−2, D1 ≡ 1 − δ, and Z1 ≡ (h/l) · φ−1, and consider
the reduced-form system (25)-(26) as a log-log stochastic representation of the BGP

equations (39) and (38), to get the OLS estimates D̂0, D̂1, ̂lnZ0, and ̂lnZ1. It is clear
that there is an over-identi�cation of the structural parameter δ and, thus, its indirect
(ILS) estimation is not feasible. The same applies to φ, if, as in Section 4, we previously
calibrate h/l.30

As shown in the text, extending the Acemoglu and Zilibotti's (2001) model by con-
sidering simultaneous horizontal and vertical R&D allows us to add two more structural
parameters, ε and ζ, to be (indirectly) estimated. Therefore, given the OLS estimates D̂0,

D̂1, ̂lnZ0, and ̂lnZ1, we get exact identi�cation of the (now four) structural parameters
and hence are able to compute their ILS estimates, as laid out in Section 4.

D. Quanti�cation with 1995 skill structure

In this Appendix, we reiterate the steps followed in the text to quantify the key structural
parameters and calibrate the model, but now using the 1995 proportion of high- to low-
skilled workers instead of the 1995-2007 average. Tables 12 and 13 depict the results. As
can be seen, they are similar to the ones obtained in Section 4.

[Table 12 goes about here]

[Table 13 goes about here]

30Alternatively, this model could be used to test some over-identi�cation hypothesis regarding the key
structural parameters. From equations (39) and (38), we see that the Acemoglu and Zilibotti's (2001)
model imposes the restrictionD0 = 2D1−1. Bearing in mind the slope estimates in Table 11, columns
(1b) and (2b), we �nd that, under that restriction, the point estimate of D1 of 0.719 implies a value
of 0.438 for D0, whereas the point estimate of D0 is 0.450. The ILS estimate of δ is 0.281, which
nearly matches the ILS point-estimate of ε in the text, 0.277. However, as regards the intercepts,
Acemoglu and Zilibotti's (2001) model imposes the restriction Z0 = Z2

1/(h/l) and, thus, the point
estimate of Z1 of −0.816 implies a value of 0.512 for Z0, whereas the point estimate of Z0 is −2.134.
Given the s.d. reported in Table 11, we �nd that this restriction is not satis�ed not even within the
95% con�dence interval.
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σ = 0.74; h/l = 1.3; α = 0.6

δ 0.269 −0.176 φ 23.071 12.796

ε 0.497 0.253 ζ 4.154 2.731

Table 12: Indirect estimates of structural parameters δ, ε, φ ≡ φH/φL, and ζ ≡ ζH/ζL based on

the extreme values of the two-standard-error con�dence intervals for the estimates of

the slope and intercept coe�cients in Table 11, columns (1c) and (2c).

ε ζ A Ê G̃H/L (s.e.) Ê G̃˜̂
X
(s.e.)

σ = 0.74; h/l = 1.3; α = 0.6

0.253 2.731 0.3596 -0.0660 (0.256) -0.0953 (0.370)

4.154 0.3726 -0.0925 (0.257) -0.1335 (0.371)

0.497 2.731 1.1596 -0.0240 (0.169) -0.0772 (0.545)

4.154 1.2163 -0.0463 (0.170) -0.1492 (0.549)

Table 13: Simulation results for the cross-country growth-skill and growth-production elasticity.

Ê G̃H/L and Ê G̃˜̂
X
denote the OLS estimate of the elasticity of the predicted growth rate,

G̃, with respect to, respectively, the observed skill structure and predicted relative

production,
˜̂
X (heteroskedasticity-consistent s.e. in brackets). Values for G̃ are ob-

tained as in Table 3, in the text. Values for ε and ζ ≡ ζH/ζL are set in accordance to

the estimation exercise in Table 12. For comparison: the estimate of the elasticity of

the observed economic growth rate with respect to the observed skill structure and

observed relative production is, respectively,−0.026 (s.e. of 0.172) and −0.003 (s.e. of

0.118).
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